Muhammad Al-Muttaqii
Chemical Reaction Engineering Laboratory, Department of Chemical Engineering, Faculty of Industrial Technology, Sepuluh Nopember Institute of Technology, Jl. Raya ITS, Keputih, Sukolilo, Surabaya 60111, Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Hydrocracking of Coconut Oil over Ni-Fe/HZSM-5 Catalyst to Produce Hydrocarbon Biofuel Muhammad Al-Muttaqii; Firman Kurniawansyah; Danawati Hari Prajitno; Achmad Roesyadi
Indonesian Journal of Chemistry Vol 19, No 2 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (259.955 KB) | DOI: 10.22146/ijc.33590

Abstract

This present study was aimed to investigate the hydrocracking of coconut oil using Ni-Fe/HZSM-5 catalyst in a batch reactor at three reaction temperatures (350, 375, and 400 °C). The Ni-Fe/HZSM-5 catalyst was prepared by using incipient wetness impregnation. The Ni-Fe/HZSM-5 catalyst was characterized using XRD, BET, and SEM-EDX. From XRD results, the loading of Ni and Fe did not change the crystalline structure of HZSM-5 catalyst. The surface area of HZSM-5 was 425 m2/g and decreased after the addition of metals (Ni and Fe) into HZSM-5 support. These changes implied that Ni and Fe particles were successfully dispersed on the HZSM-5 surface and incorporated into HZSM-5 pore. The product of hydrocarbon biofuel was analyzed using GC-MS. The GC-MS results of hydrocarbon biofuel showed the highest compounds for n-paraffin and yield for gasoil was 39.24 and 18.4% at a temperature of 400 °C, respectively. The reaction temperature affected the yield and the composition of hydrocarbon biofuel. At this reaction temperature condition, decarboxylation and decarbonylation were favored; lead to the formation of n-alkanes with an odd number of carbon atoms chain length.