Nornizar Anuar
Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Synthesis, Characterization and Morphological Study of Nicotinamide and p-Coumaric Acid Cocrystal Mohamad Nor Amirul Azhar Kamis; Hamizah Mohd Zaki; Nornizar Anuar; Mohammad Noor Jalil
Indonesian Journal of Chemistry Vol 20, No 3 (2020)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (23.757 KB) | DOI: 10.22146/ijc.45530

Abstract

Cocrystallization is one of the potent methods used to modify the physicochemical properties of drugs. Cocrystal of nicotinamide (NIC):p-coumaric acid (COU) was synthesized by a slow evaporation method using acetonitrile. The cocrystals with different feed molar ratios (NIC:COU : 1:1, 1:2, and 2:1) were characterized using DSC, PXRD, and FTIR, which revealed the formation of different polymorphs for each feed molar ratio. A single crystal of the NIC:COU (1:1) cocrystal was analyzed using single crystal X-ray diffraction (SCD), and 1H-NMR revealed a greater cocrystal structure stability compared to the previously published cocrystal. The intermolecular hydrogen bonds, N-H···O, and O-H···O interactions played a major role in stabilizing the cocrystal structure. A molecular modeling technique was used for prediction and surface chemistry assessment of the morphology showed an elongated (along y-axis) octagonal crystal shape which was in a reasonable agreement with the experimental crystal morphology. The reduction in values of the cocrystal solubility in ethanol was supported by the DSC data and simulation of crystal facets where most the crystal facets exposed to polar functional groups. At the concentration of 31.3 µM, NIC:COU (1:1) cocrystal showed more effective DPPH scavenging with 77.06% increased activity compared to NIC at the same concentration.
Characterization and Prediction of the Non-Bonded Molecular Interactions between Racemic Ibuprofen and α-Lactose Monohydrate Crystals Produced from Melt Granulation and Slow Evaporation Crystallization Zulfahmi Lukman; Nornizar Anuar; Noor Fitrah Abu Bakar; Norazah Abdul Rahman
Indonesian Journal of Chemistry Vol 20, No 6 (2020)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.48912

Abstract

Granulation of racemic ibuprofen (±IBP) and α-lactose monohydrate (ALM) at a slightly lower (±IBP) melting point is an efficient method of binding the active pharmaceutical ingredients (API) and excipient in a binderless condition. However, the co-crystals may be formed from recrystallization of ±IBP on ALM. The objective of this study is to evaluate the tendency of co-crystal formation of granules (3:7 w/w ratio of ±IBP:ALM) by melt granulation process. Second, investigate the recovery of crystals from polyethylene glycol (PEG) 300 solutions containing ±IBP-ALM mixtures. Characterizations of the samples were performed using Fourier Transform Infrared (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC) and Powder X-Ray Diffraction (PXRD) system of the ±IBP-ALM granules produced from melt crystallization and harvested crystals from PEG 300 solution which is produced using slow evaporation crystallization. Crystal analysis of solution containing ±IBP-ALM mixtures revealed that the crystals formed were not co-crystals. Molecular interactions assessment through binding prediction between ±IBP and ALM terminating surfaces was conducted using molecular modelling technique. The result showed that the favorable binding sites of ±IBP molecules were on the surfaces of (0-20), (1-10), (001) and (011) ALM crystals. Successful binding prediction by the attachment energy method has proven that the co-crystal formation between these molecules is theoretically possible.