Mahmoud Najim Aljibouri
Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Preparation and Spectroscopic Studies of Cadmium(II), Zinc(II),Mercury(II) and Vanadium(IV) Chelates Azo Ligand Derived from 4-Methyl-7-hydroxycoumarin Bayader Fathil Abass; Taghreed Mohy Al-Deen Musa; Mahmoud Najim Aljibouri
Indonesian Journal of Chemistry Vol 21, No 4 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.63032

Abstract

The present paper demonstrates the synthesis and characterization of some transition elements complexes derived from (E)-7-hydroxy-6-((4-methoxyphenyl)diazenyl)-4-methyl-2H-chromen-2-one. The ligand was prepared in the general route of azo dyes by coupling the diazonium salt of 4-methoxyaniline with 4-methyl-7-hydroxycoumarin in sodium hydroxide 10% (w/v) solution. The azo ligand was identified on the basis of elemental analyses, MS, H-NMR and FT-IR spectra. The products of complexes with the new azo dye were isolated by the direct reactions of the metal chlorides of cadmium(II), zinc(II), vanadium(IV) and mercury(II) ions with the alkaline solution of free ligand to afford the colored in the following formulas, complexes[ML2]2H2O formula, M=Cd(II) and Zn(II). However the vanadium(IV) complex was square pyramid in [VOL2]SO42H2O chemical formula. As well as the tetrahedral environment was suggested for mercury(II) complex in formula [HgL2]. The time and mole ratio factors were studied to obtain the optimized conditions of metal complexes formations and the observed data investigated the deprotonation of the azo-dye at pH to range (7–7.5) with 30 min as time of reaction to get pure metal chelates. The TG-DSC study confirmed the thermal stability of complexes at a wide range of average heating in inert gas of analysis and the results observed from loss weight percent investigated the proposed structures of the prepared metal complexes.