Fadhila Radiah Anas
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

BILANGAN KROMATIK LOKASI GRAF TAK TERHUBUNG DENGAN GRAF LINGKARAN SEBAGAI KOMPONEN-KOMPONENNYA Fadhila Radiah Anas; Des Welyyanti; Effendi Effendi
Jurnal Matematika UNAND Vol 8, No 2 (2019)
Publisher : Jurusan Matematika FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmu.8.2.33-36.2019

Abstract

Misalkan G = (V, E) suatu graf terhubung dan c suatu k-pewarnaan dari G. Kelas warna pada G adalah himpunan titik-titik yang berwarna i, dinotasikan dengan Si untuk 1 ≤ i ≤ k. Misalkan Π = {S1, S2, · · · , Sk} adalah partisi terurut dari V (G) berdasarkan pewarnaan titik, maka representasi v terhadap Π disebut kode warna dari v, dinotasikan dengan cΠ(v). Kode warna cΠ(v) dari suatu titik v ∈ V (G) didefinisikan sebagai vektor-k:cΠ(v) = (d(v, S1), d(v, S2), · · · , d(v, Sk))dimana d(v, Si) = min{d(v, x) | x ∈ Si)}, untuk 1 ≤ i ≤ k. Jika setiap titik yang berbeda di G memiliki kode warna yang berbeda untuk suatu Π, maka c disebut pewarnaan lokasi untuk G. Jumlah warna minimum yang digunakan pada pewarnaan lokasi dari graf G disebut bilangan kromatik lokasi untuk G, dinotasikan dengan χL(G). Pada penelitian ini akan dibahas tentang penentuan bilangan kromatik lokasi pada graf prisma berekor.Kata Kunci: Bilangan Kromatik Lokasi, Graf Tak Terhubung, Graf Lingkaran, Komponen