Awatef K. Ali
National Telecommunications Institute

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Improved Design of Nonlinear Control Systems with Time Delay Awatef K. Ali; MagdiSadek Mostafa Mahmoud
International Journal of Robotics and Control Systems Vol 2, No 2 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i2.631

Abstract

It is well known that time delay in nonlinear control systems may lead to the deterioration or even destabilization of the closed-loop systems. Therefore, specific analysis techniques and design methods are needed to be developed for nonlinear control systems in the presence of time delay. This chapter aims to give a broad overview of the stability and control of nonlinear time-delay systems. Firstly, we present some motivations and a comprehensive survey for the study of time-delay systems. Then, a brief overview of some control approaches is provided, specifically, the Lyapunov-Krasoviskii functional method for high-order polynomial uncertainties nonlinear time-delay systems, and nonlinear time-delay systems with nonlinear input, the Lyapunov-Razumikhin method for triangular structure nonlinear time-delay systems, dynamic gain control for full state time-delay systems. Finally, an application in chemical reactor systems is provided and some related open problems are discussed.
Coordinated Distributed Voltage Control Methods for Standalone Microgrids Awatef K. Ali; MagdiSadek Mostafa Mahmoud
International Journal of Robotics and Control Systems Vol 2, No 2 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i2.612

Abstract

A microgrid is a small-scale power grid comprising distributed generators (DGs), distributed storage systems, and loads. It will lose contribution from the main grid if it shifts to islanded mode due to pre-planned or unforeseen disturbances. To restore the terminal voltages of all the distributed generators to the reference value, this paper presents three coordinated secondary control strategies. First, motivated by the synchronization control theory of multiagent systems, a distributed control technique is developed where each of the DGs is considered an agent and they exchange information via a communication network. second, a two-level control technique is designed in which a global controller is employed to monitor the overall performance of the DGs by transmitting corrective signals to the local controllers of the agents. In this technique, all the communication is between the global controller and the local controllers without any direct communication between the agents. Third, decentralized control is provided in which each DG is separately controlled by its local controller that operates based on the local feedback measurements. Simulations are carried out on an islanded microgrid consisting of four DGs to illustrate our design approach.
Methodologies and Applications of Artificial Intelligence in Systems Engineering Awatef K. Ali; MagdiSadek Mostafa Mahmoud
International Journal of Robotics and Control Systems Vol 2, No 1 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i1.532

Abstract

This paper presents an overview of the methodologies and applications of artificially intelligent systems (AIS) in different engineering disciplines with the objective of unifying the basic information and outlining the main features. These are knowledge-based systems (KBS), artificial neural networks (ANN), and fuzzy logic and systems (FLS). To illustrate the concepts, merits, and demerits, a typical application is given from each methodology. The relationship between ANN and FLS is emphasized. Two recent developments are finally presented: one is intelligent and autonomous systems (IAS) with particular emphasis on intelligent vehicle and highway systems, and the other is the very large scale integration (VLSI) systems design, verification, and testing.
Reduced Order and Observer-Based Reset Control Systems with Time Delays Awatef K. Ali; MagdiSadek Mostafa Mahmoud
International Journal of Robotics and Control Systems Vol 2, No 3 (2022)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v2i3.709

Abstract

This paper establishes a new mechanism to stabilize plants using reduced order reset controllers. The proposed method uses state feedback to change the dynamics of plants to guarantee oscillation behavior instead of stability, then the reset mechanism will lead to stability. We show that the base system could be unstable while the reset mechanism drives the states to the equilibrium point. The order of the reset controller equals the rank of the plant’s input matrix. We show that the controller dynamics force some states to converge to the equilibrium point within a finite time. The behavior of the rest of the plant’s states depends greatly on the selection of the state feedback gain which can be selected by any appropriate conventional method. Moreover, the stability of reset time-delay systems is addressed based on a similar theorem of the Lyapunov-Krasovskii theory. Sufficient conditions are given in terms of linear matrix inequalities to guarantee asymptotic stability of the overall dynamics. Simulation results are presented to demonstrate the effectiveness of the proposed reset approaches.