Belly Yan Dewantara
Hang Tuah University, Surabaya

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Detection of Stator Winding Short Circuit Faults Through Magnetic Fields In Induction Motors Bima Rachmat Ah Ro Ufun; Iradiratu Diah Prahmana Karyatanti; Belly Yan Dewantara
JEEE-U (Journal of Electrical and Electronic Engineering-UMSIDA) Vol 5 No 1 (2021): April
Publisher : Muhammadiyah University, Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/jeeeu.v5i1.1281

Abstract

In applications in the industrial world, the use of induction motors has been widely used in operation because induction motors have many advantages, although they have many advantages, induction motors themselves also have disadvantages, namely having high starting currents. In many cases the damage to the induction motor, the damage to the stator due to a short circuit, is a frequent failure, this damage can cause considerable losses because the motor can stop operation So this research will discuss about the detection of short circuit faults in the stator winding through leaky flux using a flux sensor that is placed outside the motor and placed radially and using the Fast Fourier Transform (FFT) method. Damage to the short circuit is done by reconstructing the stator winding of the induction motor. There are two variations of short circuit damage, namely short circuit winding 1 to winding 3 and short circuit winding 2 to winding 10 on an induction motor. The short circuit data is then processed using the Fast Fourier Transform method which produces data in the form of voltage to frequency. The results of the percentage of success of short circuit fault detection seen from the loaders have an average percentage of 50%, at no load conditions can detect short circuit faults by 100%. In conditions of short circuit interruption 1-3 has a success percentage of 30% and short circuit fault 2-10 by 70%. The existence of this system is expected to be able to anticipate any damage that can cause considerable and fatal losses.
The Effects of Damage to the Outer Race Bearing on the Efficiency of the Induction Motor Using Fast Fourier Transform (FFT) Method Sulaiman Isfar; Iradiratu Diah Prahmana Karyatanti; Belly Yan Dewantara
JEEE-U (Journal of Electrical and Electronic Engineering-UMSIDA) Vol 5 No 1 (2021): April
Publisher : Muhammadiyah University, Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/jeeeu.v5i1.1284

Abstract

Bearing is an induction motor component that helps the rotor to move freely, in industrial applications it is important to maintain bearing performance in induction motors. In its use, bearing damage is one of the biggest types of damage that is often found in induction motors. Bearing damage can lead to increased vibration, increased noise, increased working temperature, and decreased efficiency. Efficiency reduction can be used as information on the condition of the motor so that this information can be used to detect damage before more serious damage occurs. This research discusses the stator current analysis method and the efficiency of damage to the motor through two harmonic amplitude ratios equipped with the fast Fourier transform (FFT) algorithm in detecting damage to the outer race bearing. It is hoped that this efficiency can be used as an evaluation of the extent to which motor energy waste occurs before more severe damage. The efficiency results on the damage to the outer race bearing using the FFT method get the highest efficiency value of 1.47 and the lowest value of 0.66.