Claim Missing Document
Check
Articles

Found 2 Documents
Search

Pedestrian Dead Reckoning pada Ponsel Cerdas sebagai Sistem Penentuan Posisi dalam Ruangan Azkario Rizky Pratama; Widyawan
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 2 No 3: Agustus 2013
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (401.619 KB)

Abstract

Nowadays, personal positioning systems are more necessary to build many location-based services. Pedestrian Dead Reckoning (PDR), which is a pedestrian positioning technique using the accelerometer sensor to recognize pattern of steps, is an alternative method that has advantages in terms of infrastructure-independent. However, the variation of walking pattern on each individual will make some difficulties for the system to detect displacement. This is really interested authors to develop a sensor-based positioning system that applied generally to all individuals. In the test, 15 test subjects was taken with the distance of each 10m, 20m and 30m. Experiment begins with the feasibility test of accelerometer sensor. In this work, a smartphone with average sampling rate 63.79 Hz and standard deviation of 1.293 is used to records the acceleration. Then, the acceleration data are analyzed to detect step and to estimate the travelled distance using several methods. Detection of steps are able to make an average error of 2.925%, while the most nearly correct displacement estimation is using Scarlet experimental method which is make a distance average error of 1.39metres at all the traveled distance.
Model Berbasis CNN untuk Estimasi dan Autentikasi Copy Detection Pattern Syukron Abu Ishaq Alfarozi; Azkario Rizky Pratama
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 12 No 1: Februari 2023
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jnteti.v12i1.6205

Abstract

Counterfeiting has been one of the crimes of the 21st century. One of the methods to overcome product counterfeiting is a copy detection pattern (CDP) stamped on the product. CDP is a copy-sensitive pattern that leads to quality degradation of the pattern after the print and scan process. The amount of information loss is used to distinguish between original and fake CDPs. This paper proposed a CDP estimation model based on the convolutional neural network (CNN), namely, CDP-CNN. The CDP-CNN addresses the spatial dependency of the image patch. Thus, it should be better than the state-of-the-art model that uses a multi-layer perceptron (MLP) architecture. The proposed model had an estimation bit error rate (BER) of 9.91% on the batch estimation method. The error rate was 9% lower than the previous method that used an autoencoder MLP model. The proposed model also had a lower number of parameters compared to the previous method. The effect of preprocessing, namely the use of an unsharp mask, was tested using a statistical testing method. The effect of preprocessing had no significant difference except in the batch estimation scheme where the unsharp mask filter reduced the error rate by at least 0.5%. In addition, the proposed model was also used for the authentication method. The authentication using the estimation model had a good separation distribution to distinguish the fake and original CDPs. Thus, the CDP can still be used as the authentication method with reliable performance. It helps anti-counterfeiting on product distribution and reduces negative impacts on various sectors of the economy.