Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimizing Effect of Wavy Leading Edge (WLE) in Rectangular Wing and Taper Wing Iis Rohmawati; Hiroshi Arai; Hidemi Mutsuda; Takuji Nakashima; Rizal Mahmud
Journal of Mechanical Engineering, Science, and Innovation Vol 1, No 2 (2021): (October)
Publisher : Mechanical Engineering Department - Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1251.569 KB) | DOI: 10.31284/j.jmesi.2021.v1i2.2296

Abstract

Experimental and numerical research have been performed to investigate the Wavy Leading Edge (WLE) effect on the rectangular wing. The WLE is inspired by humpback whale flipper morphology which is blunt and rounded in certain form pattern. This flipper shape plays an important role for its behaviour specially capturing their prey. This advantage could be applied to other systems such as fin stabilizers or wind turbines. Steady cases in various aspect ratios were conducted to find out the optimum effect of WLE with baseline NACA 0018 profile at Reynolds number 1.4 x 105. The chord length of the wing (c) was 125 mm. The WLE shape defined as wavelength (W) 8% of c and amplitude (d) is 5% of c. The aspect ratio (AR) variations were 1.6; 3.9; 5.1; 7.9 and 9.6.  A simple rectangular form of the wing was selected to analysis the WLE effect on the various ARs. The taper wing shape is applied to find out the WLE effect at the AR 7.9. three types of taper ratio (TR) are 0.1; 0.3 and 0.5. The results show that the WLE on the taper wing has better advantage to control the stall in steady case. Another impressive result was the WLE wing with AR 7.9 and TR 0.3 has the best lift coefficient and pressure distribution.Keywords: stall, wavy leading edge, steady case, rectangle wing, taper wing, aspect ratio. 
Wavy Leading Edge (WLE) Influence on a Rectangular Wing Using an Unsteady Analysis Approach Iis Rohmawati; Hiroshi Arai; Ika Nurjannah
Journal of Mechanical Engineering, Science, and Innovation Vol 3, No 1 (2023): (April)
Publisher : Mechanical Engineering Department - Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.jmesi.2023.v3i1.4477

Abstract

A rectangular wing with Wavy Leading Edge (WLE) effect was investigated experimentally and numerically. This research was carried out with the NACA 0018 profile. The morphology of humpback whale flippers, which are blunt and rounded in a specific pattern, inspired the design of the WLE. The rectangular wing was explored in pitching motion with a reduced frequency of k = 0.25 and varied aspect ratios. Multiple aspect ratios (AR) of the rectangular wing have been evaluated to determine the best wing aspect ratio, notably 3.9, 5.1, and 7.9. Only at AR 3.9 and 5.1 does the WLE perform efficiently in both upstroke and downstroke motion. WLE has a sinusoidal function shape. The improvement of lift force was stronger during upstroke motion than during downstroke motion. The stall is minimized during the pitching motion of the WLE wing, according to the numerical simulation. This result could be applied to fin stabilizers or wind turbines.