Mohammed Tarique
University of Science and Technology of Fujairah

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

A novel convolutional neural network based dysphonic voice detection algorithm using chromagram Rumana Islam; Mohammed Tarique
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i5.pp5511-5518

Abstract

This paper presents a convolutional neural network (CNN) based non-invasive pathological voice detection algorithm using signal processing approach. The proposed algorithm extracts an acoustic feature, called chromagram, from voice samples and applies this feature to the input of a CNN for classification. The main advantage of chromagram is that it can mimic the way humans perceive pitch in sounds and hence can be considered useful to detect dysphonic voices, as the pitch in the generated sounds varies depending on the pathological conditions. The simulation results show that classification accuracy of 85% can be achieved with the chromagram. A comparison of the performances for the proposed algorithm with those of other related works is also presented.