Claim Missing Document
Check
Articles

Found 2 Documents
Search

Impacts of integration of wind farms on voltage stability margin Hani Attar; Mehrdad Ahmadi Kamarposhti; Ahmed Amin Ahmed Solyman
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 5: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i5.pp4623-4631

Abstract

The current methods use conservative voltage based on the maximum wind speed with simultaneous occurrence in peak loading conditions to determine the maximum size of the wind farm. Wind patterns never let the wind farm on the wind farm site produce its maximum capacity during hours of heavy loading conditions. A new method is presented in this research to determine the maximum size of wind farms including voltage stability margin (VSM) and wind patterns at the wind farm site in the size of a wind farm. This plan is a method to increase the maximum size of a wind farm with a limited wind generation option under certain conditions based on VSM. The proposed method is applied to the wind farm in the IEEE 14-bus network power system. The results of the new method show that the maximum size of wind farms increases when the system operates with intermittent wind control to maintain the voltage stability.
Investigating and calculating the temperature of hot-spot factor for transformers Khalid Yahya; Hani Attar; Haitham Issa; Jamal Ali Ramadan Dofan; Nassim A. Iqteit; Adel E. M. Yahya; Ahmed Amin Ahmed Solyman
Indonesian Journal of Electrical Engineering and Computer Science Vol 30, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v30.i3.pp1297-1307

Abstract

This article explores the measurement of temperature in transient states, utilizing the principles of heat transfer and thermal-electrical metaphor. The study focuses on the nonlinear thermal resistances present in various locations within a distribution transformer, while taking into account variations in oil physical variables and temperature loss. Real-time data obtained from heat run tests on a 250-MVA-ONAF cooled unit, conducted by the transformer manufacturer, is used to verify the thermal designs. The observations are then compared to the loading framework of the IEC 60076-7:2005 system. The findings of this research provide a better understanding of temperature measurement in transient states, particularly in distribution transformers, and can be applied to the design and development of more efficient and reliable transformer systems.