Claim Missing Document
Check
Articles

Found 2 Documents
Search

Improved crowbar protection technique for DFIG using fuzzy logic Zineb En-nay; Ismail Moufid; Aboubakr El Makrini; Hassane El Markhi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 13, No 3: September 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v13.i3.pp1779-1790

Abstract

A doubly-fed induction generator is the most widely used as a wind turbine generator. Due to its drawbacks, doubly fed induction generator (DFIG) is extremely sensitive to grid disturbances, and the fragility of some components which are costly to the producer. Also, its acquisition value is very high in terms of maintenance time or component cost, causing substantial harm to both the energy production and power supplier. It is required that the DFIG components must be protected, especially power electronics devices and DC-Link capacitor. Therefore, this paper presents an improved crowbar strategy for DFIG. This method is based on the AI technique concept of utilizing a fuzzy logic controller. The main goal of this project is to improve the system performance by reducing the dangerous oscillations of electromagnetic torque, DC-link voltage, and rotor current during fault. This work consists of replacing the hysteresis control for the crowbar with fuzzy logic to realize crowbar-FLC. The proposed crowbar is based on free light chain (FLC) depending on rotor currents and DC-link voltage measurements. The control strategy is simulated in the MATLAB Simulink platform to evaluate the efficiency of the suggested technique.
A deterministic method of distributed generation hosting capacity calculation: case study of underground distribution grid in Morocco soukaina naciri; Ismail Moufid; Hassan El Moussaoui; Tijani Lamhamdi; Hassane El Markhi
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i1.pp144-158

Abstract

Global warming has become a significant concern over the past decades. As a result, governments have shifted their policies toward renewable energy sources and environmentally friendly industries. This approach requires a renewal of the electrical networks to accommodate this new intermittent generation (from solar and wind sources) while remaining stable and reliable. In this vision, the notion of hosting capacity has been introduced to define the amount of new distributed generation that an electrical network can host without affecting its stability and reliability. This study proposes a deterministic method based on the π model of cables to estimate the underground feeder's hosting capacity. This method considers reverse power flow, overvoltage, reconfiguration, overloading, and the physical characteristics of lines. It is applied to the Moroccan medium voltage underground radial feeder. Through DIgSILENT power factory software, the power flow analysis is carried out to validate its effectiveness in overcoming overvoltage and cable overload problems. The results validate the relevance of our method, its reliability, its fluidity of application, and its ability to maintain performance indices within the acceptable range.