Loc H. Tran
Ho Chi Minh City University of Technology

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Hypergraph convolutional neural network-based clustering technique Loc H. Tran; Nguyen Trinh; Linh H. Tran
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 3: September 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i3.pp995-1003

Abstract

This paper constitutes the novel hypergraph convolutional neural networkbased clustering technique. This technique is employed to solve the clustering problem for the Citeseer dataset and the Cora dataset. Each dataset contains the feature matrix and the incidence matrix of the hypergraph (i.e., constructed from the feature matrix). This novel clustering method utilizes both matrices. Initially, the hypergraph auto-encoders are employed to transform both the incidence matrix and the feature matrix from high dimensional space to low dimensional space. In the end, we apply the k-means clustering technique to the transformed matrix. The hypergraph convolutional neural network (CNN)-based clustering technique presented a better result on performance during experiments than those of the other classical clustering techniques.