Miqdam Tariq Chaichan
Energy and Renewable Energies Technology Center, University of Technology-Iraq, Baghdad

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Emissions Characteristics and Engine Performance from the Interaction Effect of EGR and Diesel-Ethanol Blends in Diesel Engine Mohammed Ali Fayad; Moafaq Kaseim Al-Ghezi; Sanaa A Hafad; Slafa I Ibrahim; Marwa K Abood; Hind A Al-Salihi; Louay A Mahdi; Miqdam Tariq Chaichan; Hayder Abed Dhahad
International Journal of Renewable Energy Development Vol 11, No 4 (2022): November 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.45051

Abstract

Recently, most of the researchers focused on provide lower greenhouse gas emissions that emitted from diesel engines by using renewable fuels to be good alternative to the conventional diesel fuel. Ethanol can be derived from renewable sources such as sugar cane, corn, timber and dates. In the current study, the ethanol fuel used in the tests was derived from the dates. The effects of using exhaust gas recirculation (EGR) diesel-ethanol blend (E10) with on engine performance and emissions characteristics have been studied in diesel engine under various engine loads. This study focused the use of oxygen in the bio-ethanol composition to compensate for the decrease occurred by the addition of EGR, which improves the engine performance and reduces its emissions. In this experiment, the ratios of EGR were 10%, 20% and 30% as well as 10% ratio of ethanol was blended into the diesel fuel blend under fixed engine speed. A traditional (without additional systems to reduce emissions) four cylinders direct injection (DI) diesel engine was used for all tests. The brake specific fuel consumption (BSFC) increased with increasing the EGR ratio by 10%, 20% and 30% by 18.7%, 22.4% and 37.4%, respectively. The thermal efficiency decreased under variable conditions of engine load for different ethanol blends. Furthermore, the emissions of NOX decreased when fuelled B10 into the engine in comparison with diesel under low engine load. Significant reduction in the NOx emissions were found when applied EGR in the tests than to the absence EGR for E10 blend and diesel. The NOx reduction rate was 12.3%, 30.6% and 43.4% when EGR rate was 10%, 20% and 30%, respectively. In addition, the concentrations of HC and CO emissions decreased more by 8.23% and 6.4%, respectively, when using E10 in comparison with the diesel for various engine loads. It is indicated that the oxygen reduction by EGR effect was compensated from ethanol blend combustion. The results showed that the combination use of E10 and EGR leads to significant reduction in engine emissions accompanied with partial reduction in the engine performance. 
The Influence of Temperature and Irradiance on Performance of the photovoltaic panel in the Middle of Iraq Moafaq Kaseim Al-Ghezi; Roshen Tariq Ahmed; Miqdam Tariq Chaichan
International Journal of Renewable Energy Development Vol 11, No 2 (2022): May 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.43713

Abstract

The photovoltaic (PV) panels are expected to be the most important systems to meet global energy demand by converting solar energy into electricity. The main obstacle to the widespread deployment of the PV systems its the limited efficiency, which are greatly affected by the solar radiation and the operating temperature. The full knowledge of the performance, efficiency and output power of photovoltaic modules and the extent of their change with the fluctuations of solar radiation and temperature is necessary to determine the optimal size of the system and avoid the financial risks of the project. This paper investigated numaricaly and experimentaly the influence of operating temperature and solar radiation on the output power and efficiency of polycrystalline PV panels in Baghdad-Iraq. The PVsyst software was used to simulate a model implementing simulation results presented the impact of variations temperature and solar radiation in the curves of I-V, P-V and efficiency. In order to verify the reliability of the simulated results with experimental ones, several measuring devices have been used to conduct field experiments in the outdoor conditions. It were used to determine the characteristics and performance of a 120W polycrystalline PV panel for different ranges of solar radiation and operating temperature. The simulation results showed that the current, voltage, output power and efficiency increased with increasing solar radiation, while they decreased with increasing temperature except the current that was increased. The experimental and simulated results were identical in terms of the effect of temperature and solar radiation on the current, voltage, output power and efficiency of the PV panel. The experimental tests showed that when the temperature is increased by 1°C, the current was increased by about 0.068%, the voltage decreased by 0.34%, the output power decreased by 0.489% and the efficiency decreased about 0.586%.  The experimental results displayed that the parameters of the PV panel under real operating conditions behave differently than in the standard test conditions (STC), as they are strongly affected by weather fluctuations in terms of temperature and solar radiation
Emissions Characteristics and Engine Performance from the Interaction Effect of EGR and Diesel-Ethanol Blends in Diesel Engine Mohammed Ali Fayad; Moafaq Kaseim Al-Ghezi; Sanaa A Hafad; Slafa I Ibrahim; Marwa K Abood; Hind A Al-Salihi; Louay A Mahdi; Miqdam Tariq Chaichan; Hayder Abed Dhahad
International Journal of Renewable Energy Development Vol 11, No 4 (2022): November 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.45051

Abstract

Recently, most of the researchers focused on provide lower greenhouse gas emissions that emitted from diesel engines by using renewable fuels to be good alternative to the conventional diesel fuel. Ethanol can be derived from renewable sources such as sugar cane, corn, timber and dates. In the current study, the ethanol fuel used in the tests was derived from the dates. The effects of using exhaust gas recirculation (EGR) diesel-ethanol blend (E10) with on engine performance and emissions characteristics have been studied in diesel engine under various engine loads. This study focused the use of oxygen in the bio-ethanol composition to compensate for the decrease occurred by the addition of EGR, which improves the engine performance and reduces its emissions. In this experiment, the ratios of EGR were 10%, 20% and 30% as well as 10% ratio of ethanol was blended into the diesel fuel blend under fixed engine speed. A traditional (without additional systems to reduce emissions) four cylinders direct injection (DI) diesel engine was used for all tests. The brake specific fuel consumption (BSFC) increased with increasing the EGR ratio by 10%, 20% and 30% by 18.7%, 22.4% and 37.4%, respectively. The thermal efficiency decreased under variable conditions of engine load for different ethanol blends. Furthermore, the emissions of NOX decreased when fuelled B10 into the engine in comparison with diesel under low engine load. Significant reduction in the NOx emissions were found when applied EGR in the tests than to the absence EGR for E10 blend and diesel. The NOx reduction rate was 12.3%, 30.6% and 43.4% when EGR rate was 10%, 20% and 30%, respectively. In addition, the concentrations of HC and CO emissions decreased more by 8.23% and 6.4%, respectively, when using E10 in comparison with the diesel for various engine loads. It is indicated that the oxygen reduction by EGR effect was compensated from ethanol blend combustion. The results showed that the combination use of E10 and EGR leads to significant reduction in engine emissions accompanied with partial reduction in the engine performance.