Alfan S. Praja
Badan Meteorologi, Klimatologi, dan Geofisika (BMKG)

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

POLA TINGGI GELOMBANG DI LAUT JAWA MENGGUNAKAN MODEL WAVEWATCH-III Ayu W. Pramita; Denny N. Sugianto; Indra B. Prasetyawan; Roni Kurniawan; Alfan S. Praja
Jurnal Meteorologi dan Geofisika Vol 21, No 1 (2020)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (771.319 KB) | DOI: 10.31172/jmg.v21i1.609

Abstract

Laut Jawa merupakan wilayah Perairan Indonesia yang menarik untuk dikaji, karena perairan ini mempunyai sumber daya hayati laut yang besar terutama untuk perikanan laut. Sampai saat ini, hasil dari model gelombang menjadi alat utama dalam memberikan informasi prakiraan tinggi gelombang laut, kondisi ini dikarenakan oleh terbatasnya peralatan observasi lapangan untuk memperoleh data gelombang di lautan. Studi ini dilakukan bertujuan untuk memahami pola tinggi gelombang di Laut Jawa dengan menggunakan model gelombang Wavewatch-III, dan untuk mengetahui akurasi data model Wavewatch-III dengan data observasi. Berdasarkan hasil luaran model Wavewatch-III, tinggi gelombang signifikan (Hs) di Laut Jawa selama periode Musim Barat (DJF) diperoleh bekisar antara 0,2 m – 1 m, dengan arah dominan gelombang laut dari Barat, pada periode Musim Peralihan I (MAM), tinggi gelombang signifikan di Laut Jawa berkisar antara 0,4 m – 0,8 m dan arah dominan gelombang laut berasal dari Tenggara menuju ke Barat laut, pada Musim Timur (JJA), tinggi gelombang signifikan di Laut Jawa berkisar antara 0,6 m – 1,4 m, dengan arah dominan gelombang laut berasal dari Tenggara menuju ke Barat laut, dan pada Musim Peralihan II (SON), tinggi gelombang signifikan di Laut Jawa berkisar antara 0,2 m – 0,4 m, dengan arah dominan gelombang laut berasal dari tenggara menuju ke Barat. Puncak tinggi gelombang signifikan di Laut Jawa terjadi pada saat Musim Timur (JJA). Hasil perbandingan model Wavewacth-III dengan model ECMWF menunjukkan bahwa Wavewatch-III mempunyai performa yang bagus dengan nilai CF sebesar 0,04, dan nilai error sebesar 35,5%. Sedangkan perbandingan model Wavewatch-III terhadap data observasi, diperoleh nilai korelasi yang rendah, yaitu hanya 0.32 dan nilai Hs dari model Wavewatch-III lebih tinggi dari observasi. The Java Sea is an interesting part of Indonesian waters to be studied, because it has a great of marine biological resources, especially for marine fisheries. Until now, wave model data has become the main tool for providing sea wave height information, this condition is caused by the limited observation equipment to obtain ocean data. This study aims to understand the sea wave height patterns in the Java Sea using the Wavewatch-III model, and to determine the accuracy of the Wavewatch-III model data with observation data. Based on the output of the Wavewatch-III model, the significant wave height (Hs) in the Java Sea during the West Season period (DJF) obtained a range between 0.2 m - 1 m, with the dominant direction of the sea wave from the West, in the Transition Season I (MAM) period, the significant wave height in the Java Sea obtained a range between 0.4 m - 0.8 m, and the dominant direction of sea waves comes from the Southeast to the Northwest, in the East Season (JJA), significant wave height in the Java Sea obtained a range between 0.6 m - 1.4 m, with the dominant direction of sea waves coming from the Southeast to the Northwest, and in the Transition II (SON), significant wave height in the Java Sea obtained a range between 0.2 m - 0.4 m, with the dominant direction of sea waves coming from the Southeast to the West. The significant wave height peaks in the Java Sea occur during the East Season (JJA). The results of Wavewacth-III comparison with ECMWF, obtained a good correlation value, while comparison with observational data, obtained a low correlation value, and the wave height value of Wavewatch-III is higher than observation. The results of the comparison of the Wavewacth-III model with the ECMWF model show that Wavewatch-III has good performance with a CF value of 0.04, and an error value of 35.5%. While the comparison of the Wavewatch-III model to the observation data, a low correlation value is obtained, which is only 0.32 and the Hs value of the Wavewatch-III model is higher than the observation.
MODIFIKASI KONSTANTA PERSAMAAN Z-R RADAR SURABAYA UNTUK PENINGKATAN AKURASI ESTIMASI CURAH HUJAN Thahir D. F. Hutapea; Donaldi S. Permana; Alfan S. Praja; Linda F. Muzayanah
Jurnal Meteorologi dan Geofisika Vol 21, No 2 (2020)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31172/jmg.v21i2.545

Abstract

Radar cuaca sangat berpotensi untuk memberikan estimasi curah hujan beresolusi tinggi secara spasial dan temporal yang dapat meningkatkan akurasi prakiraan dini cuaca ekstrim dan juga dapat menyediakan informasi curah hujan pada wilayah yang tidak mempunyai stasiun pengamatan curah hujan. Radar cuaca tidak dapat secara langsung mengukur intensitas curah hujan, melainkan berdasarkan hubungan empiris antara reflektifitas radar (Z) dan tingkat curah hujan (R) dalam hubungan Z-R (Z = ARb). Pada penelitian ini, metode optimalisasi digunakan untuk menentukan konstanta A dan b yang sesuai untuk wilayah Surabaya di provinsi Jawa Timur. Data reflektifitas pada radar Surabaya dan data curah hujan per jam dari stasiun Juanda Surabaya pada periode Desember 2014 - Februari 2015 digunakan dalam studi ini. Hasil studi menunjukkan bahwa hubungan Z-R dengan persamaan Z = 110R1,6 menghasilkan estimasi curah hujan yang memiliki indikator statistik lebih baik dibandingkan dengan estimasi dari persamaan Marshall-Palmer (MP, Z = 200R1,6) dan Rosenfeld (Ros, Z = 250R1,2) sehingga dapat meningkatkan akurasiestimasi curah hujan di wilayah Surabaya.  Weather radar can potentially provide rainfall estimates with high spatial and temporal resolution in which improving the early warning accuracy of extreme weather and also provide rainfall estimates in areas with insufficient rainfall stations. Weather radar cannot directly be used to measure the rainfall intensity, but based on an empirical relationship between the reflectivity (Z) and rainfall rate (R) in the Z-R relationship (Z = ARb). In this study, an optimization method was used to determine suitable constants A and b for Surabaya, East Java province. The reflectivity data from Surabaya radar and hourly rainfall data at Juanda station in Surabaya during a period of December 2014 - February 2015 were used in this study. The results show that a Z-R relationship in the form of equation Z = 110R1,6 produces rainfall estimates with a better statistical indicator than ones produced by Marshall-Palmer (MP, Z = 200R1,6) and Rosenfeld (Ros, Z = 250R1,2) relationships, making it suitable for improving the accuracy of rainfall estimates for Surabaya.
PENGARUH MICROBURST DAN LOW-LEVEL WIND SHEAR (LLWS) PADA KASUS KECELAKAAN PENDARATAN PESAWAT LION AIR TANGGAL 13 APRIL 2013 DI BALI Achmad Sasmito; Donaldi S. Permana; Alfan S. Praja; Urip Haryoko
Jurnal Meteorologi dan Geofisika Vol 21, No 1 (2020)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31172/jmg.v21i1.549

Abstract

Pada tanggal 13 April  2013 pukul 14.00-15.00 WIB telah terjadi musibah jatuhnya pesawat Lion Air Boeing 737-800 di laut Bali sebelum mencapai ujung landas pacu 09 di bandara Ngurah Rai, Bali. Informasi meteorologi yang yang lengkap sangat diperlukan untuk membantu mengungkap penyebab terjadinya peristiwa tersebut. Kajian dilakukan dengan menggunakan data satelit, data radar, model global JMA, data AWOS dan Flight Data Recorder (FDR). Berdasarkan analisis data satelit MTSAT menunjukkan bahwa di sekitar bandara terdapat pertumbuhan awan Cumulus yang berkembang menjadi awan Cumulonimbus (Cb) dengan suhu puncak awan -42o C, hasil analisis data radar cuaca menunjukkan bahwa di sebelah barat landasan sekitar 5 km dari ujung landasan yang biasa digunakan untuk touch down pesawat ditengarai terdapat awan Cumulus dan Cb dengan tinggi dasar awan sekitar 500 meter.  Selain itu, hasil analisis data NWP model global dan AWOS menunjukkan adanya LLWS yakni angin permukaan dominan dari timur sedangkan angin lapisan atasnya (lapisan1000 mb) dominan angin dari timur-laut dengan kecepatan antara 10-15 knot. Dengan mempertimbangkan seluruh data meteorologi yang tersedia, jalur penerbangan, dan kerusakan pesawat diduga kuat bahwa saat akan mendarat pesawat Lion Air berada dibawah awan Cb, dan mengalami microburst sebelum sempat mendarat.   On April 13, 2013 at 14.00-15.00 WIB (07.00 – 08.00 UTC) the Lion Air Boeing 737-800 aircraft crashed in the Bali sea before reaching the end of runway 09 in Ngurah Rai airport, Bali. This study aims to analyze the potential occurrence of microburst and LLWS as the causes of this accident based on satellite, weather radar, JMA global models, AWOS and aircraft FDR data. Satellite data showed that cumulus clouds developed into Cb clouds with peak temperatures of -52.5 oC around the airport. Radar data showed that in the west of the runway around 2 - 3 km there were suspected cumulus and Cb clouds with a cloud base height of about 500 meters. Besides, model data and AWOS showed the existence of LLWS indicated by the easterly surface wind and the northeasterly upper layer winds (925 mb) with speeds between 10-15 knots. This was supported by aircraft FDR data which showed a very strong downburst which caused the aircraft to drop drastically with an average of 375 meters/minute from 6000 feet at 07.00 UTC to 1000 feet at 07.04 UTC before finally crashed at 07.10 UTC. This indicates the potential for a microburst that results in an aircraft accident.
MODIFIKASI KONSTANTA PERSAMAAN Z-R RADAR SURABAYA UNTUK PENINGKATAN AKURASI ESTIMASI CURAH HUJAN Thahir D. F. Hutapea; Donaldi S. Permana; Alfan S. Praja; Linda F. Muzayanah
Jurnal Meteorologi dan Geofisika Vol. 21 No. 2 (2020)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31172/jmg.v21i2.545

Abstract

Radar cuaca sangat berpotensi untuk memberikan estimasi curah hujan beresolusi tinggi secara spasial dan temporal yang dapat meningkatkan akurasi prakiraan dini cuaca ekstrim dan juga dapat menyediakan informasi curah hujan pada wilayah yang tidak mempunyai stasiun pengamatan curah hujan. Radar cuaca tidak dapat secara langsung mengukur intensitas curah hujan, melainkan berdasarkan hubungan empiris antara reflektifitas radar (Z) dan tingkat curah hujan (R) dalam hubungan Z-R (Z = ARb). Pada penelitian ini, metode optimalisasi digunakan untuk menentukan konstanta A dan b yang sesuai untuk wilayah Surabaya di provinsi Jawa Timur. Data reflektifitas pada radar Surabaya dan data curah hujan per jam dari stasiun Juanda Surabaya pada periode Desember 2014 - Februari 2015 digunakan dalam studi ini. Hasil studi menunjukkan bahwa hubungan Z-R dengan persamaan Z = 110R1,6 menghasilkan estimasi curah hujan yang memiliki indikator statistik lebih baik dibandingkan dengan estimasi dari persamaan Marshall-Palmer (MP, Z = 200R1,6) dan Rosenfeld (Ros, Z = 250R1,2) sehingga dapat meningkatkan akurasiestimasi curah hujan di wilayah Surabaya.  Weather radar can potentially provide rainfall estimates with high spatial and temporal resolution in which improving the early warning accuracy of extreme weather and also provide rainfall estimates in areas with insufficient rainfall stations. Weather radar cannot directly be used to measure the rainfall intensity, but based on an empirical relationship between the reflectivity (Z) and rainfall rate (R) in the Z-R relationship (Z = ARb). In this study, an optimization method was used to determine suitable constants A and b for Surabaya, East Java province. The reflectivity data from Surabaya radar and hourly rainfall data at Juanda station in Surabaya during a period of December 2014 - February 2015 were used in this study. The results show that a Z-R relationship in the form of equation Z = 110R1,6 produces rainfall estimates with a better statistical indicator than ones produced by Marshall-Palmer (MP, Z = 200R1,6) and Rosenfeld (Ros, Z = 250R1,2) relationships, making it suitable for improving the accuracy of rainfall estimates for Surabaya.
PENGARUH MICROBURST DAN LOW-LEVEL WIND SHEAR (LLWS) PADA KASUS KECELAKAAN PENDARATAN PESAWAT LION AIR TANGGAL 13 APRIL 2013 DI BALI Achmad Sasmito; Donaldi S. Permana; Alfan S. Praja; Urip Haryoko
Jurnal Meteorologi dan Geofisika Vol. 21 No. 1 (2020)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31172/jmg.v21i1.549

Abstract

Pada tanggal 13 April  2013 pukul 14.00-15.00 WIB telah terjadi musibah jatuhnya pesawat Lion Air Boeing 737-800 di laut Bali sebelum mencapai ujung landas pacu 09 di bandara Ngurah Rai, Bali. Informasi meteorologi yang yang lengkap sangat diperlukan untuk membantu mengungkap penyebab terjadinya peristiwa tersebut. Kajian dilakukan dengan menggunakan data satelit, data radar, model global JMA, data AWOS dan Flight Data Recorder (FDR). Berdasarkan analisis data satelit MTSAT menunjukkan bahwa di sekitar bandara terdapat pertumbuhan awan Cumulus yang berkembang menjadi awan Cumulonimbus (Cb) dengan suhu puncak awan -42o C, hasil analisis data radar cuaca menunjukkan bahwa di sebelah barat landasan sekitar 5 km dari ujung landasan yang biasa digunakan untuk touch down pesawat ditengarai terdapat awan Cumulus dan Cb dengan tinggi dasar awan sekitar 500 meter.  Selain itu, hasil analisis data NWP model global dan AWOS menunjukkan adanya LLWS yakni angin permukaan dominan dari timur sedangkan angin lapisan atasnya (lapisan1000 mb) dominan angin dari timur-laut dengan kecepatan antara 10-15 knot. Dengan mempertimbangkan seluruh data meteorologi yang tersedia, jalur penerbangan, dan kerusakan pesawat diduga kuat bahwa saat akan mendarat pesawat Lion Air berada dibawah awan Cb, dan mengalami microburst sebelum sempat mendarat.   On April 13, 2013 at 14.00-15.00 WIB (07.00 – 08.00 UTC) the Lion Air Boeing 737-800 aircraft crashed in the Bali sea before reaching the end of runway 09 in Ngurah Rai airport, Bali. This study aims to analyze the potential occurrence of microburst and LLWS as the causes of this accident based on satellite, weather radar, JMA global models, AWOS and aircraft FDR data. Satellite data showed that cumulus clouds developed into Cb clouds with peak temperatures of -52.5 oC around the airport. Radar data showed that in the west of the runway around 2 - 3 km there were suspected cumulus and Cb clouds with a cloud base height of about 500 meters. Besides, model data and AWOS showed the existence of LLWS indicated by the easterly surface wind and the northeasterly upper layer winds (925 mb) with speeds between 10-15 knots. This was supported by aircraft FDR data which showed a very strong downburst which caused the aircraft to drop drastically with an average of 375 meters/minute from 6000 feet at 07.00 UTC to 1000 feet at 07.04 UTC before finally crashed at 07.10 UTC. This indicates the potential for a microburst that results in an aircraft accident.
POLA TINGGI GELOMBANG DI LAUT JAWA MENGGUNAKAN MODEL WAVEWATCH-III Ayu W. Pramita; Denny N. Sugianto; Indra B. Prasetyawan; Roni Kurniawan; Alfan S. Praja
Jurnal Meteorologi dan Geofisika Vol. 21 No. 1 (2020)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31172/jmg.v21i1.609

Abstract

Laut Jawa merupakan wilayah Perairan Indonesia yang menarik untuk dikaji, karena perairan ini mempunyai sumber daya hayati laut yang besar terutama untuk perikanan laut. Sampai saat ini, hasil dari model gelombang menjadi alat utama dalam memberikan informasi prakiraan tinggi gelombang laut, kondisi ini dikarenakan oleh terbatasnya peralatan observasi lapangan untuk memperoleh data gelombang di lautan. Studi ini dilakukan bertujuan untuk memahami pola tinggi gelombang di Laut Jawa dengan menggunakan model gelombang Wavewatch-III, dan untuk mengetahui akurasi data model Wavewatch-III dengan data observasi. Berdasarkan hasil luaran model Wavewatch-III, tinggi gelombang signifikan (Hs) di Laut Jawa selama periode Musim Barat (DJF) diperoleh bekisar antara 0,2 m – 1 m, dengan arah dominan gelombang laut dari Barat, pada periode Musim Peralihan I (MAM), tinggi gelombang signifikan di Laut Jawa berkisar antara 0,4 m – 0,8 m dan arah dominan gelombang laut berasal dari Tenggara menuju ke Barat laut, pada Musim Timur (JJA), tinggi gelombang signifikan di Laut Jawa berkisar antara 0,6 m – 1,4 m, dengan arah dominan gelombang laut berasal dari Tenggara menuju ke Barat laut, dan pada Musim Peralihan II (SON), tinggi gelombang signifikan di Laut Jawa berkisar antara 0,2 m – 0,4 m, dengan arah dominan gelombang laut berasal dari tenggara menuju ke Barat. Puncak tinggi gelombang signifikan di Laut Jawa terjadi pada saat Musim Timur (JJA). Hasil perbandingan model Wavewacth-III dengan model ECMWF menunjukkan bahwa Wavewatch-III mempunyai performa yang bagus dengan nilai CF sebesar 0,04, dan nilai error sebesar 35,5%. Sedangkan perbandingan model Wavewatch-III terhadap data observasi, diperoleh nilai korelasi yang rendah, yaitu hanya 0.32 dan nilai Hs dari model Wavewatch-III lebih tinggi dari observasi. The Java Sea is an interesting part of Indonesian waters to be studied, because it has a great of marine biological resources, especially for marine fisheries. Until now, wave model data has become the main tool for providing sea wave height information, this condition is caused by the limited observation equipment to obtain ocean data. This study aims to understand the sea wave height patterns in the Java Sea using the Wavewatch-III model, and to determine the accuracy of the Wavewatch-III model data with observation data. Based on the output of the Wavewatch-III model, the significant wave height (Hs) in the Java Sea during the West Season period (DJF) obtained a range between 0.2 m - 1 m, with the dominant direction of the sea wave from the West, in the Transition Season I (MAM) period, the significant wave height in the Java Sea obtained a range between 0.4 m - 0.8 m, and the dominant direction of sea waves comes from the Southeast to the Northwest, in the East Season (JJA), significant wave height in the Java Sea obtained a range between 0.6 m - 1.4 m, with the dominant direction of sea waves coming from the Southeast to the Northwest, and in the Transition II (SON), significant wave height in the Java Sea obtained a range between 0.2 m - 0.4 m, with the dominant direction of sea waves coming from the Southeast to the West. The significant wave height peaks in the Java Sea occur during the East Season (JJA). The results of Wavewacth-III comparison with ECMWF, obtained a good correlation value, while comparison with observational data, obtained a low correlation value, and the wave height value of Wavewatch-III is higher than observation. The results of the comparison of the Wavewacth-III model with the ECMWF model show that Wavewatch-III has good performance with a CF value of 0.04, and an error value of 35.5%. While the comparison of the Wavewatch-III model to the observation data, a low correlation value is obtained, which is only 0.32 and the Hs value of the Wavewatch-III model is higher than the observation.