Fazrul Rafsanjani Sadarang
Badan Meteorologi Klimatologi dan Geofisika

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

STUDY OF SINGLE- AND DOUBLE-MOMENT MICROPHYSICS SCHEME IMPACT ON LILI AND MANGGA TROPICAL CYCLONE Fazrul Rafsanjani Sadarang; Destry Intan Syafitri J.
Jurnal Meteorologi dan Geofisika Vol 23, No 3 (2022): Special Issue
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (516.845 KB) | DOI: 10.31172/jmg.v23i3.804

Abstract

In this study, prediction of tropical cyclones using the Weather Research and Forecasting (WRF) model was used to test the double-moment (DM) and single-moment (SM) microphysical parameterization schemes in event of Lili and Mangga Tropical Cyclones. Models with microphysical parameterization schemes WDM5, WDM6, WSM5, WSM6, and without microphysical parameterization schemes (CTL) were each tested against track predictions, the pressure value, and maximum wind speed. The results of track prediction show that the best schemes in the tropical cyclone case of Lili and Mangga is WSM6 and WDM6, respectively, with an average error value of 78.1 and 80.1 km. Based on the Taylor diagram, the prediction results of the pressure value and the maximum wind speed in case of Lili Tropical Cyclones get the WDM6 scheme as the best scheme. Meanwhile, the results of the pressure prediction at the cyclone center in the case of Mangga Tropical Cyclones show that the WDM6 scheme is the best. However, the prediction of maximum wind speed in Mangga tropical cyclones produces the CTL scheme as the best scheme. This study shows that DM dan SM microphysical parameterization schemes have a big impact on track prediction compare to pressure value and maximum wind speed variable.
STUDY OF SINGLE- AND DOUBLE-MOMENT MICROPHYSICS SCHEME IMPACT ON LILI AND MANGGA TROPICAL CYCLONE Fazrul Rafsanjani Sadarang; Destry Intan Syafitri J.
Jurnal Meteorologi dan Geofisika Vol. 23 No. 3 (2022): Special Issue
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31172/jmg.v23i3.804

Abstract

In this study, prediction of tropical cyclones using the Weather Research and Forecasting (WRF) model was used to test the double-moment (DM) and single-moment (SM) microphysical parameterization schemes in event of Lili and Mangga Tropical Cyclones. Models with microphysical parameterization schemes WDM5, WDM6, WSM5, WSM6, and without microphysical parameterization schemes (CTL) were each tested against track predictions, the pressure value, and maximum wind speed. The results of track prediction show that the best schemes in the tropical cyclone case of Lili and Mangga is WSM6 and WDM6, respectively, with an average error value of 78.1 and 80.1 km. Based on the Taylor diagram, the prediction results of the pressure value and the maximum wind speed in case of Lili Tropical Cyclones get the WDM6 scheme as the best scheme. Meanwhile, the results of the pressure prediction at the cyclone center in the case of Mangga Tropical Cyclones show that the WDM6 scheme is the best. However, the prediction of maximum wind speed in Mangga tropical cyclones produces the CTL scheme as the best scheme. This study shows that DM dan SM microphysical parameterization schemes have a big impact on track prediction compare to pressure value and maximum wind speed variable.
WRF-MODEL PARAMETERIZATION TEST FOR PREDICTING EXTREME HEAVY RAINFALL EVENT OVER KETAPANG REGENCY Fazrul Rafsanjani Sadarang
Jurnal Meteorologi dan Geofisika Vol. 24 No. 1 (2023)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31172/jmg.v24i1.924

Abstract

Heavy rains that cause floods and landslides in the Ketapang Regency can be predicted by utilizing the weather research and forecast (WRF) model. The WRF model used, of course, needs to be configured to represent the conditions that exist in Ketapang Regency. This study evaluates the combination of cumulus and microphysics parameterization, producing the best prediction of 24-hour accumulated rainfall. The combination of cumulus and microphysics parameterization tested as many as 24 schemes which later will be obtained which combination can produce the best prediction of rainfall accumulation with the comparison of rainfall measured at the Observation Station of the Meteorology, Climatology, and Geophysics Agency (BMKG) in Ketapang Regency. The results show that combining the KF-Scheme cumulus parameterization scheme and the Kessler-Scheme microphysics can better predict 24-hour accumulated rainfall than other tested parameterization schemes. This result is based on the root mean square error (RMSE), which shows that this combination scheme produces the smallest value and large correlation coefficient (CORR). From this research, it can also be seen that cumulus parameterization has a more dominant role than microphysics parameterization.