Claim Missing Document
Check
Articles

Found 1 Documents
Search

QSAR Study on Aromatic Disulfide Compounds as SARS-CoV Mpro Inhibitor Using Genetic Algorithm-Support Vector Machine Rizki Amanullah Hakim; Annisa Aditsania; Isman Kurniawan
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 7, No. 2, May 2022
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v7i2.1428

Abstract

COVID-19 is a type of pneumonia caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). This virus causes severe acute respiratory syndrome and 2 million active cases of COVID-19 have been found worldwide. A new strain of the SARS-CoV-2 virus emerged that proved to be more virulent than its predecessor. Regarding the design of a new inhibitor for this strain, SARS-CoV Main Protease (Mpro) was used as the target inhibitor. In the in silico development, the Quantitative Structure-Activity Relationship (QSAR) method is commonly used to predict the biological activity of unknown compounds to improve the process of drug design of a disease, including COVID-19. In this study, we aim to develop a QSAR model to predict the activity of aromatic disulfide compounds as SARS-CoV Mpro inhibitors using Genetic Algorithm (GA) – Support Vector Machine (SVM). GA was used for feature selection, while SVM was used for model prediction. The used dataset is set of features of aromatic disulfide compounds, along with information on the toxicity activity. We found that the best SVM model was obtained through the implementation of the polynomial kernel with the value of R2­­train and R2test­ scores are 0.952 and 0.676, respectively.