FAUZI FRAHMA TALININGSIH
Fakultas Teknik Elektro, Telkom University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Sistem Otentikasi Biometrik Berbasis Sinyal EKG Menggunakan Convolutional Neural Network 1 Dimensi FAUZI FRAHMA TALININGSIH; YUNENDAH NUR FU’ADAH; SYAMSUL RIZAL; ACHMAD RIZAL; MUHAMMAD ADNAN PRAMUDITO
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 7, No 1 (2022): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v7i1.1-10

Abstract

ABSTRAKBiometrik merupakan salah satu analisis karakteristik individu yang saat ini banyak digunakan, seperti sidik jari, pengenalan suara, dan pengenalan wajah. Metode biometrik tersebut masih memiliki kelemahan seperti mudah untuk dimanipulasi. Oleh karena itu, penelitian ini akan menggunakan sinyal Elektrokardiogram (EKG) sebagai salah satu metode biometrik. Sinyal EKG memiliki keunikan pada setiap individu sehingga sulit untuk dimanipulasi. Penelitian ini mengembangkan sistem otentikasi biometrik berbasis sinyal EKG. Data yang digunakan berasal dari ECG-ID database dengan jumlah 90 subjek. Sinyal EKG yang digunakan hanya menggunakan gelombang PQRST sebagai input model Convolutional Neural Network 1 Dimensi (CNN). Hasil akurasi yang diperoleh menunjukkan 92.2%. Dengan demikian, sistem yang dikembangkan memungkinkan digunakan sebagai otentikasi biometrik.Kata kunci: Biometrik, Sinyal EKG, Convolutional Neural NetworkABSTRACTBiometrics is analyses individual characteristics that are currently widely used, such as fingerprints, voice recognition, and face recognition. The biometric method still has weaknesses, such as being easy to manipulate. Therefore, this study will use an Electrocardiogram (ECG) signal as a biometric method. The ECG signal is unique to each individual, so it is not easy to manipulate. This study develops a biometric authentication system based on ECG signals. The data used comes from the ECG-ID database with a total of 90 subjects. The ECG signal used only PQRST waves as input for the 1-Dimensional Convolutional Neural Network (CNN) model. The accuracy results obtained show 92.2%. Thus, the developed system allows it to be used as biometric authentication.Keywords: Biometric, ECG Signal, Convolutional Neural Network
Identifikasi Sinyal Congestive Heart Failure dengan Metode Convolutional Neural Network 1D MUHAMMAD ADNAN PRAMUDITO; YUNENDAH NUR FU’ADAH; RITA MAGDALENA; ACHMAD RIZAL; FAUZI FRAHMA TALININGSIH
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 7, No 1 (2022): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v7i1.11-20

Abstract

ABSTRAKPenyakit jantung merupakan salah satu penyebab utama kematian di dunia. Salah satu penyakit jantung yang perlu diperhatikan adalah congestive heart failure (CHF). CHF adalah suatu kondisi di mana jantung tidak mampu memompa darah ke seluruh tubuh. Penyakit ini dapat didiagnosis dengan EKG. Oleh karena itu, pada penelitian ini dibuat sebuah sistem yang dapat mengidentifikasi penyakit CHF secara otomatis menggunakan metode convolutional neural network (CNN) dengan 4 hidden layer dan 16 output channel, fully connected layer, dan aktivasi Softmax. Data yang digunakan dalam penelitian ini diambil dari MITBIH dan BIDMC. Penlitian ini memberikan akurasi 100%, sehingga deteksi penyakit CHF otomatis membantu staf medis mendiagnosis pasien untuk menerima perawatan yang tepat.Kata kunci: Elektrokardiogram (EKG), Convolutional Neural Network (CNN), Normal Sinus Rhythm (NSR), Congestive Heart Failure (CHF)ABSTRACTHeart disease is one of the leading causes of death in the world. One of the heart diseases that need to be considered is congestive heart failure (CHF). CHF is a condition in which the heart is unable to pump blood throughout the body. ECG can diagnose this disease. Therefore, this study created a system that can automatically identify CHF disease using the convolutional neural network (CNN) method with four hidden layers and 16 output channels, a fully connected layer, and Softmax activation. The data used in this study were taken from MIT-BIH and BIDMC. In this study provides 100% accuracy. Automated CHF disease detection helps medical staff diagnose patients to receive appropriate treatment.Keywords: Electrocardiogram (ECG), Convolutional Neural Network (CNN), Normal Sinus Rhythm (NSR), Congestive Heart Failure (CHF)