p-Index From 2020 - 2025
0.444
P-Index
This Author published in this journals
All Journal Jurnal Repositor
Achmad Fauzi Saksenata
Universitas Muhammadiyah Malang

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Klasifikasi Citra Sel Darah Untuk Penyakit Malaria Dengan Metode CNN Achmad Fauzi Saksenata; Agus Eko Minarno; Yufis Azhar
Jurnal Repositor Vol 4 No 2 (2022): Mei 2022
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/repositor.v4i2.1283

Abstract

Semakin berkembangnya teknologi mengakibatkan pola hidup masyarakat ikut berubah, karena kebutuhan masyarakat bergantung pada teknologi yang ada. Perubahan ini dapat dilihat dalam penggunaan komputer dengan dibantu berbagai alat yang telah dibuat dapat mendeteksi penyakit pada seseorang. Dengan adanya alat tersebut dapat membantu masyarakat agar lebih cepat dan mudah mengetahui penyakit yang diderita. Oleh karena itu, diperlukan sistem yang dapat menganalisa, mengenali, secara sensitive, akurat dan otomatis mendiagnosa manusia terkena penyakit malaria atau tidak. Metode yang disulkan untuk menyelesaikan permasalahan tersebut Deep Learning (DL) yaitu Convolutional Neural Network (CNN) yang unggul untuk klasifikasi. Dalam penelitian ini, mengusulkan penggunaan CNN untuk membantu dalam mengklasifikasikan penyakit malaria. Dataset terdiri dari 27558 gambar sel darah. Model yang diusulkan mencapai kinerja dengan akurasi terbaik 96%. Pengujiannya berhasil serta berjalan dengan baik.
Klasifikasi Citra Sel Darah Untuk Penyakit Malaria Dengan Metode CNN Achmad Fauzi Saksenata; Agus Eko Minarno; Yufis Azhar
Jurnal Repositor Vol 3 No 2 (2021): Februari 2021
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/repositor.v3i2.1290

Abstract

Semakin berkembangnya teknologi mengakibatkan pola hidup masyarakat ikut berubah, karena kebutuhan masyarakat bergantung pada teknologi yang ada. Perubahan ini dapat dilihat dalam penggunaan komputer dengan dibantu berbagai alat yang telah dibuat dapat mendeteksi penyakit pada seseorang. Dengan adanya alat tersebut dapat membantu masyarakat agar lebih cepat dan mudah mengetahui penyakit yang diderita. Oleh karena itu, diperlukan sistem yang dapat menganalisa, mengenali, secara sensitive, akurat dan otomatis mendiagnosa manusia terkena penyakit malaria atau tidak. Metode yang disulkan untuk menyelesaikan permasalahan tersebut Deep Learning (DL) yaitu Convolutional Neural Network (CNN) yang unggul untuk klasifikasi. Dalam penelitian ini, mengusulkan penggunaan CNN untuk membantu dalam mengklasifikasikan penyakit malaria. Dataset terdiri dari 27558 gambar sel darah. Model yang diusulkan mencapai kinerja dengan akurasi terbaik 96%. Pengujiannya berhasil serta berjalan dengan baik.