Yeferzon Meza-Chaupis
Universidad Nacional Enrique Guzmán y Valle

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Quadratic vector support machine algorithm, applied to prediction of university student satisfaction Omar Chamorro-Atalaya; Guillermo Morales-Romero; Yeferzon Meza-Chaupis; Elizabeth Auqui-Ramos; Jesús Ramos-Cruz; César León-Velarde; Irma Aybar-Bellido
Indonesian Journal of Electrical Engineering and Computer Science Vol 27, No 1: July 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v27.i1.pp139-148

Abstract

This study aims to identify the most optimal supervised learning algorithm to be applied to the prediction of satisfaction of university students. In this study, the IBM SPSS - 25.0 software was used to test the reliability of the satisfaction questionnaire and the MATLAB R2021b software through the classification learner technique to determine the supervised learning algorithm. The experimental results determine a Cronbach's Alpha reliability of 0.979, in terms of the classification algorithm, it is validate d that the quadratic vector support machine (SVM) has better performance metrics, being correct in 97.8% (a ccuracy) in the predictions of satisfaction of university students, with a r ecall (sensitivity) of 96.5% and an F1 score of 0.968. Likewise, when eva luating the classification model by means of the receiver operating characteristic curve (ROC) technique, it is identified that for the three expected classes of satisfaction the value of the area under the curve (AUC) is equal to 1, in such sense the pred ictive model through the SVM Quadratic algorithm, has a high capacity to distinguish between the 3 classes ; i) d issatisfied, ii) s atisfied and iii) v ery satisfied of satisfaction of university students.