Mohamed Sathik
Manonmaniam Sundaranar University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Converting 2D magnetic resource imagining brain tumors to 3D structure using depth map machine learning techniques K. A. Mohamed Riyazudeen; Mohamed Sathik
Indonesian Journal of Electrical Engineering and Computer Science Vol 27, No 1: July 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v27.i1.pp513-520

Abstract

The useĀ of medical imaging technology aids clinicians in recognizing and assessing patient problems, as well as improving treatment procedures. However, while conducting complex procedures such as the excision of brain tumors, the knowledge and biological research gathered from 2D images are insufficient. Converting 2D images to 3D images may assist doctors in determining the size, shape, and sharp area of tumor cells in the brain. The feasibility of translating 2D medical image data to a 3D model is described in this work. A suggested framework for predicting the size, shape, and location of a brain tumor using a minimized genetic machine learning method, and then converting the tumor information into 3D images using a depth map estimation approach after detecting the tumor information. When the tumor is located, the left and right view data are combined to form a 3D magnetic resonance imaging reconstruction. We used mixed reality methods to minimize file size while preserving the greatest quality of the model during a brain surgical operation.