Sami Ullah
Abasyn University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Analysis and comparison of a proposed mutation operator and its effects on the performance of genetic algorithm Sami Ullah; Abdus Salam; Mohsin Masood
Indonesian Journal of Electrical Engineering and Computer Science Vol 25, No 2: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v25.i2.pp1208-1216

Abstract

Genetic algorithms (GAs) are dependent on various operators and parameters. The most common evolutionary operators are parent selection, crossover, and mutation. Each operator has broad implementations with its pros and cons. A successful GA is highly dependent on genetic diversity which is the main driving force that steers a GA towards an optimal solution. Mutation operator implements the idea of exploration to search for uncharted areas and introduces diversity in a population. Thus, increasing the probability of GA to converge to a globally optimum solution. In this paper, a new variant of mutation operator is proposed, and its functions are studied and compared with the existing operators. The proposed mutation operator as well as others such as m-mutation, shuffle, swap, and inverse are tested for their ability to introduce diversity in population and hence, their effects on the performance of GA. All these operators are applied to Max one problem. The results concluded that the proposed variant is far more superior to the existing operators in terms of introducing diversity and hence early convergence to an optimum solution.