Tarek A. Boghdady
Cairo University

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Energy harvesting maximization by integration of distributed generation based on economic benefits Tarek A. Boghdady; Samar G. A. Nasser; Essam El-Din Aboul Zahab
Indonesian Journal of Electrical Engineering and Computer Science Vol 25, No 2: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v25.i2.pp610-625

Abstract

The purpose of distributed generation systems (DGS) is to enhance the distribution system (DS) performance to be better known with its benefits in the power sector as installing distributed generation (DG) units into the DS can introduce economic, environmental and technical benefits. Those benefits can be obtained if the DG units' site and size is properly determined. The aim of this paper is studying and reviewing the effect of connecting DG units in the DS on transmission efficiency, reactive power loss and voltage deviation in addition to the economical point of view and considering the interest and inflation rate. Whale optimization algorithm (WOA) is introduced to find the best solution to the distributed generation penetration problem in the DS. The result of WOA is compared with the genetic algorithm (GA), particle swarm optimization (PSO), and grey wolf optimizer (GWO). The proposed solutions methodologies have been tested using MATLAB software on IEEE 33 standard bus system.
Output power control of nuclear reactor using ant lion optimization-based controller Tarek A. Boghdady; Mostafa Mahmoud Ibrahim; Essam Aboul Zahab; Mahmoud Sayed
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i3.pp1299-1305

Abstract

Power level control is a critical issue in nuclear power stations due to its nonlinear dynamics. One of the most commonly used controllers is fractional order proportional–integral–derivative (FOPID). The FOPID is an enhanced and modern controlling system that has two additional added parameters. In this paper, comparison between particle swarm, gray wolf and ant lion optimization techniques is performed to determine the FOPID controller parameters. The nuclear reactor is a pressurized water reactor which is a fifth order nonlinear reactor model and is simulated using MATLAB software based on the point kinetic model. The integral square error (ISE) performance index is used to evaluate the performance of the three optimization techniques. The simulation results show that ant lion optimization for tuning the FOPID controller parameters gives the best performance and integral square error index better than the two other optimization techniques.
Enhancing active radial distribution networks by optimal sizing and placement of DGs using modified crow search algorithm Mohamed Abdelbadea; Tarek A. Boghdady; Doaa Khalil Ibrahim
Indonesian Journal of Electrical Engineering and Computer Science Vol 16, No 3: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v16.i3.pp1179-1188

Abstract

Incorporating many Distributed Generators (DGs) technologies in power system networks has grown rapidly in recent years. Distributed generation (DG) plays a key role in reducing power loss and enhancing the voltage profile in radial distribution networks. However, inappropriate DGs site or size may cut network efficiency; moreover, injecting harmonics is one of the integration concerns of inverter-based DGs. Two-procedure based approach is introduced in this paper. The first procedure solves the DGs siting and sizing problem, as a multi-objective one by improving the voltage profile of the whole distribution network and also reducing its power loss. A weighted sum method is presented to create the Pareto optimal front in this procedure and get the compromised solution by applying a novel metaheuristic optimizer, named Crow Search Algorithm (CSA). A modification on CSA is also proposed and applied to improve its performance. The achieved solution for inverter-based DGs placement and size is checked in the second procedure to make sure the accepted voltage THD at all buses by implementing detailed simulation for the tested system using Matlab/Simulink. The proposed approach has been tested on IEEE 33-bus radial distribution system with photovoltaic DGs. To confirm the superiority of the modified CSA algorithm in terms of quality of solution, its achieved results are compared with the results offered by the original CSA algorithm and published results of some other nature-inspired algorithms.