Anida Nirwana
Universitas Buana Perjuangan Karawang

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Klasifikasi Permasalahan Kredit Macet Pada Bank Menggunakan Algoritma Decision Tree C4.5 Anida Nirwana; Amril Siregar; Rahmat Rahmat
Scientific Student Journal for Information, Technology and Science Vol. 3 No. 1 (2022): Scientific Student Journal for Information, Technology and Science
Publisher : Scientific Student Journal for Information, Technology and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Dalam pemberian kredit tentunya lembaga keuangan harus merencanakan sedemikian rupa dan berusaha mengurangi risiko permasalahan adanya kredit macet. Faktor yang sering terjadi dalam permasalahan kredit macet ini utamanya dari pihak nasabah, karena kegagalan bisnis ditambah lagi dengan adanya pandemi covid-19 dan juga faktor yang sering terjadi karena ketidaktelitiannya pihak bank dalam menganalisis data calon nasabah yang memiliki karakter yang tidak baik serta saat melakukan analisis kelayakan usaha nasabah pengetahuan pihak bank terbatas, sehingga analisis kredit tidak tepat. Data penelitian ini diambil dari web kaggle pada bulan November tahun 2020 sebanyak 10.127 data dan 10 variabel. Penelitian ini bertujuan untuk mengurangi risiko permasalahan kredit macet dengan cara mengkalasifikasikan permasalahan kredit macet pada bank dengan menerapkan algoritma decision tree c4.5. Dalam mengkalasifikasikan kredit macet agar menghasilkan pohon keputusan yang akan menjadi penunjang dalam proses perhitungan tingkat keakurasian data. Dataset dibagi menjadi dua yakni data training dan data testing dengan pembagian data 60 : 40. Pengujian ini menggunakan excel untuk perhitungan manual dengan model data training, python dengan model data testing dan menggunakan tool weka 3.8.5 dengan model data testing dengan pembagian data 60 : 40, untuk 60% yaitu data training dan 40% data testing. Didalam pembagian data untuk data training yaitu berjumlah 6076 data dan untuk data testing berjumlah 4051 data dengan memiliki nilai accuracy sebesar 99,9753%, precision sebesar 100%, recall sebesar 99,8%, dan f-measure sebesar 99,9%.