Muhammad Faris Hazim
Mahasiswa Departemen Teknik Geodesi, Gadjah Mada University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Hasil Studi Pola Kebakaran Lahan Gambut melalui Citra Satelit Sentinel-2 dengan Pengimplementasian Machine Learning Metode Random Forest : Kajian Literatur Annisa Rizky Kusuma; Fauzan Maulana Shodiq; Muhammad Faris Hazim; Dany Puguh Laksono
Jurnal Geospasial Indonesia Vol 4, No 2 (2021): December
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jgise.60828

Abstract

Kebakaran lahan gambut merupakan peristiwa yang sulit diprediksi perilakunya. Karakteristik tanah gambut yang kompleks dan faktor-faktor alam lain seperti arah angin, status vegetasi, dan kandungan air membuat kasus ini menjadi salah satu kasus menarik yang masih menjadi objek penelitian yang belum tuntas hingga saat ini. Ketika memasuki musim kemarau kondisi kadar air di dalam tanah gambut akan semakin berkurang, maka potensi terjadinya kebakaran akan semakin tinggi. Pada studi ini dilakukan analisis faktor penyebab kebakaran dengan area cakupan yang luas melalui satelit Sentinel-2. Citra satelit yang diperoleh nantinya akan diolah oleh machine learning untuk memprediksi penyebaran api. Hasil literatur yang telah dilakukan diperoleh bahwa Ground Water Level (GWL), kematangan gambut, suhu, curah hujan dan kelembaban, serta kerapatan vegetasi dapat diidentifikasi melalui perhitungan indeks. Indeks yang digunakan diantaranya indeks Differenced Normalized Difference Vegetation Index (dNDVI) dan Normalized Difference Water Index (NDWI) yang diolah dengan algoritma machine learning metode Random Forest memilki akurasi mencapai 96%.