Yu Zhang
Department of Materials Science and Engineering, Faculty of Engineering National University of Singapore, Singapore 117574

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Computationally efficient pixelwise deep learning architecture for accurate depth reconstruction for single-photon LiDAR Zhang, Yu; Zheng, Yiming
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i6.pp5934-5941

Abstract

This work introduces a compact deep learning architecture for depth image reconstruction from time-resolved single-photon histograms. Unlike most deep learning approaches that mainly rely on 3D convolutions, our network is implemented purely with 1D convolutions without assistance from other sensors or pre-processing. Both synthetic and real datasets were used to evaluate the accuracy of our model for challenging signal-to-background ratios (SBRs), ranging from 5:1 to 1:1. Conventional maximum likelihood (ML) and another photon-efficient optimization-based algorithm were adopted for performance comparisons. Results from synthetic data show that our model achieves lower mean absolute error (MAE). Additionally, results from real data indicate that our model exhibits better reconstruction for high-ambient effects and provides better spatial information. Unlike existing 3D deep learning models, we process pixel-wise histograms continuously, rather than splitting the point cloud and stitching them afterward, which saves memory and computational resources, thereby laying a foundation for real-world embedded applications.