Claim Missing Document
Check
Articles

Found 2 Documents
Search

STRUKTUR MIKRO DAN SIFAT MEKANIS ALUMINIUM (Al-Si) PADA PROSES PENGECORAN MENGGUNAKAN CETAKAN LOGAM, CETAKAN PASIR DAN CETAKAN CASTABLE Martinus Mandala; Eddy Siradj; Sofyan Djamil
Jurnal Ilmiah Teknik Mesin POROS Vol 14, No 2 (2016): Jurnal Ilmiah Teknik Mesin POROS
Publisher : Program Studi Teknik Mesin Universitas Tarumanagara

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (773.378 KB) | DOI: 10.24912/poros.v14i2.841

Abstract

Abstract: Aluminum foundry is one of the business sectors that to much in demand by the public, ranging from small scale to large scale . Through remelting process, some small-scale aluminum casting industry, using raw materials of used aluminum as the main raw material. Some of the cast products are required to have good quality to comply with quality standards on its use. This study aims to look at the difference in quality of cast aluminum (Al-Si) using three types of mold, the metal mold, sand mold, and the mold castable by testing the mechanical properties of materials that impact and Brinell hardness testing. The method used was experimental or trial. The results obtained are the result cast using a metal mold has a hardness value of the highest of 63 HBN, with a value of impact 37
Pengaruh Substitusi Ion Mn dan Ion Co Serta Ion Ti pada Pembentukan Fasa dan Sifat Magnetik Barium Hexaferrite BaFe9(MnCo)1,5Ti1,5O19 Disintesis Melalui Rute Metallurgi Serbuk Priyono P; Eddy Siradj; Azwar Manaf
INDONESIAN JOURNAL OF APPLIED PHYSICS Vol 3, No 01 (2013): April
Publisher : Department of Physics, Sebelas Maret University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.13057/ijap.v3i01.1310

Abstract

Barium ferrite with hexagonal molecular BaFe12O19 is well-known for its high performance permanent magnetic and good mechanical properties and attracted attention of researchers for a long time. The hexaferrite powders were produced according to a conventional ceramic process with powder metallurgy method. Moreover, the powders were analyzed by X-ray diffraction, to detect the presence of secondary phases. The magnetic properties of the sampleswere measured at room temperature using Permeagraph with a maximum applied field of 1.5 T. The calculation of the lattice parameter on conventional magnets (BaFe12O19) results a = b = 5,894 Å and c = 23,210 Å, while the substituted phase has a range value of a = b between 5,893 Å to 5,899 Å, and c lattice parameter value is in the range of 23,328 ˚A to 23,346 Å.With the partial substitution of Fe+3 ions by Mn+2 ions, ion Co+2 and Ti+4 ion magnetic properties decrease primarily on the magnetic coercivity from 125 kA / m (conventional) to ~ 5 kA /m in the substituted materials.