Kelvin Wong
Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Mulawarman

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Prediksi Tingkat Inflasi Dengan Menggunakan Metode Backpropagation Neural Network Kelvin Wong; Aji Prasetya Wibawa; Herman Santoso Pakpahan; Anton Prafanto; Hario Jati Setyadi
Sains, Aplikasi, Komputasi dan Teknologi Informasi Vol 1, No 2 (2019): Sains, Aplikasi, Komputasi dan Teknologi Informasi
Publisher : Universitas Mulawarman

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (436.462 KB) | DOI: 10.30872/jsakti.v1i2.2600

Abstract

Artikel ini bertujuan untuk memprediksi tingkat inflasi di Kota Samarinda, Kalimantan Timur dengan mengimplementasikan algoritma cerdas, Backpropagation Neural Network (BPNN). Data tingkat inflasi diperoleh dari Biro Pusat Statistik Provinsi (BPS) Kota Samarinda https://samarindakota.bps.go.id/ periode Januari 2012 hingga Januari 2017. Pengukuran akurasi prediksi algoritma BPNN menggunakan metode mean square error (MSE). Berdasarkan hasil percobaan, metode BPNN dengan parameter arsitektur 5-5-5-1; fungsi pembelajaran adalah trainlm; fungsi aktivasi adalah logsig dan purelin; laju pembelajaran adalah 0.1 mampu menghasilkan tingkat kesalahan prediksi yang baik dengan nilai MSE sebesar 0.00000424. Hasil penelitian menunjukkan bahwa algoritma BPNN ini dapat digunakan sebagai alternatif metode dalam memprediksi tingkat inflasi dalam rangka mendukung pertumbuhan ekonomi yang berkesinambungan sehingga dapat meningkatkan kesejahteraan masyarakat di Kota Samarinda, Kalimantan Timur.