Claim Missing Document
Check
Articles

Found 1 Documents
Search

Analisis Sentimen Data Provider Layanan Internet Pada Twitter Menggunakan Support Vector Machine Dengan Penambahan Algoritma Levenshtein Distance Ida Bagus Nyoman Wijana Manuaba; Gede Rasben Dantes; Gede Indrawan
Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan) Vol. 5 No. 2 (2022): Volume V - Nomor 2 - Maret 2022
Publisher : Teknik Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47970/siskom-kb.v5i2.261

Abstract

Komentar pada data twitter mengandung banyak opini terkait suatu objek atau topik. Dari kumpulan komentar, dapat dilakukan analisis sentimen menggunakan Support Vector Machine untuk memperoleh hasil klasifikasi positif dan negatif. Data yang digunakan berkaitan dengan provider atau penyedia jaringan internet yang ada di Indonesia. Penambahan algoritma Levenshtein Distance pada tahap text preprocessing bertujuan untuk meningkatkan hasil klasifikasi. Tahapan Proses klasifikasi meliputi, pengumpulan data menggunakan API twitter, penghapusan duplicate data, pemberian label data, tahap text preprocessing (convert emoticon, cleansing, case folding, stemming, stopword removal, and tokenizing, penerapan algoritma Levenshtein Distance, stopword removal lanjutan, convert negation), feature extraction (TF-IDF), serta proses klasifikasi menggunakan Support Vector Machine.Hasil pengujian dengan menggunakan confusion matrix, menunjukan peningkatan hasil klasifikasi yang lebih baik setelah menggunakan algoritma Levenshtein Distance pada tahap text preprocessing. Nilai accuracy mengalami peningkatan sebesar 2%, recall positif 3%, recall negatif 1%, precision positif 1%, dan precision negatif 2%. Tetapi kecepatan waktu proses pada tahap text preprocessing dengan penambahan algoritma Levenshtein Distance lebih lambat sebesar 295,606 detik, jika dibandingkan tanpa adanya penambahan algoritma Levenshtein Distance.