Rabiatul Adawiya Razali
Universiti Teknologi MARA

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Comparing bags of features, conventional convolutional neural network and AlexNet for fruit recognition Nik Noor Akmal Abdul Hamid; Rabiatul Adawiya Razali; Zaidah Ibrahim
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i1.pp333-339

Abstract

This paper presents a comparative study between Bag of Features (BoF), Conventional Convolutional Neural Network (CNN) and Alexnet for fruit recognition.  Automatic fruit recognition can minimize human intervention in their fruit harvesting operations, operation time and harvesting cost.  On the other hand, this task is very challenging because of the similarities in shapes, colours and textures among various types of fruits. Thus, a robust technique that can produce good result is necessary. Due to the outstanding performance of deep learning like CNN and its pre-trained models like AlexNet in image recognition, this paper investigates the accuracy of conventional CNN, and Alexnet in recognizing thirty different types of fruits from a publicly available dataset.  Besides that, the recognition performance of BoF is also examined since it is one of the machine learning techniques that achieves good result in object recognition.   The experimental results indicate that all of these three techniques produce excellent recognition accuracy. Furthermore, conventional CNN achieves the fastest recognition result compared to BoF, and Alexnet.