Rajasekaran Meenal
Karunya Institute of Technology and Sciences

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Sensitivity analysis based artificial neural network approach for global solar radiation prediction in India Rajasekaran Meenal; A. Immanuel Selvakumar; Prawin Angel Michael; Ekambaram Rajasekaran
Indonesian Journal of Electrical Engineering and Computer Science Vol 20, No 1: October 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v20.i1.pp31-38

Abstract

The objective of this paper is to build an artificial neural network model to predict global solar radiation (GSR) with improved accuracy using less number of best input parameters selected using sensitivity analysis. In this work, the input parameters used for training the artificial neural network (ANN) models are bright sunshine duration, maximum and minimum temperature, day length, months, extra terrestrial radiation (H0), relative humidity and geographical parameters of the locations namely the latitude and longitude. Sensitivity analysis is used to discover how the output data are influenced by the changeability of the input data.Three ANN models namely T-ANN, S-ANN and TS-ANN are proposed with most suitable input parameters selected using sensitivity analysis. The principle of this feature selection using sensitivity analysis is to improve the prediction accuracy of solar radiation models with less number of inputs. The proposed ANN model is also tested under noisy data and proved that ANN is able to perform reasonably good in GSR prediction on practical applications where the data is affected by noise caused by errors on measuring, fault of data acquisition system, recording problems, and so on.
Machine learning based smart weather prediction Rajasekaran Meenal; Kiruthic Kailash; Prawin Angel Michael; Jeyaraj Jency Joseph; Francis Thomas Josh; Ekambaram Rajasekaran
Indonesian Journal of Electrical Engineering and Computer Science Vol 28, No 1: October 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v28.i1.pp508-515

Abstract

Weather forecasting refers to the prediction of atmospheric conditions depending on a given time and location. Weather prediction is essential and it plays a significant role in many sectors namely energy and utililities, marine transportation, aviation, agriculture and forestry to a greater extent. Accurate weather forecast mechanism help the farmers for suitable planning of farming operations that will prevent crop losses. In this work, the weather parameters namely precipitation, relative humidity, wind speed and solar radiation were predicted for few Indian locations using the conventional temperature based empirical models and machine learning algorithms such as linear regression, support-vector machine (SVM) and decision tree. Forecasting of weather parameters, on which agriculture depends, will increase the overall yield and it helps farmers and agricultural-based businesses to plan better. From the current results, it is observed that machine learning (ML) based methods had a better prediction results than the physics based conventional models for weather forecasting with mean square error of 0.1397 and correlation coefficient of 0.9259. The objective of this work is to arrive at an optimized end result and a better weather prediction using the Machine learning models with lesser computational effort.