Abimanyu Dharma Poernomo
Bina Nusantara University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Indonesian online travel agent sentiment analysis using machine learning methods Abimanyu Dharma Poernomo; Suharjito Suharjito
Indonesian Journal of Electrical Engineering and Computer Science Vol 14, No 1: April 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v14.i1.pp113-117

Abstract

Many companies use social media to support their business activities. Three leading online travel agent such as Traveloka, Tiket.com, and Agoda use Facebook for supporting their business as customer service tool. This study is to measure customer satisfaction of Traveloka, Tiket.com, and Agoda by analyzing Facebook posts and comments data from their fan pages. That data will be analyzed with three machine learning algorithms such as K-Nearest Neighbors (KNN), Naïve Bayes, and Support Vector Machine (SVM) to determine the sentiment.  From the classification results, data will be selected with the highest f-score to be used to calculate the Net Sentiment Score used to measure customer satisfaction. The result shows that KNN result better than Naive Bayes and SVM based on f-score. Based on Net Sentiment Score shows companies that get the highest satisfaction value of Traveloka followed by Tiket.com and Agoda