Guo Zhao
Southeast University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Short-Term Prediction of Wind Power Based on an Improved PSO Neural Network Hong Zhang; Guo Zhao; Lixing Chen; Bailiang Liu
Indonesian Journal of Electrical Engineering and Computer Science Vol 12, No 7: July 2014
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v12.i7.pp4973-4980

Abstract

Connecting wind power to the power grid has recently become more common. To better manage and use wind power, its strength must be predicted precisely, which is of great safety and economic significance. In this paper, the short-term power prediction of wind power is based on self-adaptive niche particle swarm optimization (NPSO) in a neural net. Improved PSO adopts the rules of classification and elimination of a niche using a self-adaptive nonlinear mutation operator. Compared with the traditional method of maximum gradient, NPSO can skip a local optimal solution and approach the global optimal solution more easily in practice. Compared with the basic PSO, the number of iterations is reduced when the global optimal solution is obtained. The method proposed in this paper is experimentally shown to be capable of efficient prediction and useful for short-term power prediction.