J Amudhavel
MLR Institute of Technology

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Machine Learning with PySpark - Review Raswitha Bandi; J Amudhavel; R Karthik
Indonesian Journal of Electrical Engineering and Computer Science Vol 12, No 1: October 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v12.i1.pp102-106

Abstract

A reasonable distributed memory-based Computing system for machine learning is Apache Spark. Spark is being superior in computing when compared with Hadoop. Apache Spark is a quick, simple to use for handling big data that has worked in modules of Machine Learning, streaming SQL, and graph processing. We can apply machine learning algorithms to big data easily, which makes it simple by using Spark and its machine learning library MLlib, even this can be made simpler by using the Python API PySpark. This paper presents the study on how to develop machine learning algorithms in PySpark.