Phatthanaphong Chomphuwiset
Mahasarakham University

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Improving the sub-image classification of invasive ductal carcinoma in histology images Khanabhorn Kawattikul; Kodchanipa Sermsai; Phatthanaphong Chomphuwiset
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 1: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i1.pp326-333

Abstract

Whole slide image (WSI) processing is a common technique used in the analysis process performed by pathologists. Identifying precise and accurate regions of cancerous in the tissue is an important process in the disease diagnosis modality. This work proposes an automated technique for identifying invasive ductal carcinoma (IDC) in histology images using. An image is divided into small non-overlapped patches (or image windows). Then, the task is to classify the image patches into different classes, i.e., i) IDC and ii) non-IDC. We employ a two-stage classification-based to classify the patches, as to identify IDC regions in the tissue. In the first stage (patch-level classification), image patch classification is carried out using a conventional handcrafted feature and deep-learning technique are explored. The second stage (post-processing) undergoes a refinement process, which considers the spatial relationships between the neighboring patches. This stage aims to amend some of miss-classified patches. Markov random field (MRF) is implemented in this stage to examine the relationships of the patches and their neighborhoods. The experiments are conducted on public dataset. The experimental results show the post-processing can improve the performance of the classification in the first stage using the handcrafted-based technique and deep learning.
Deep learning for classifying thai deceptive messages Panida Songram; Suchart Khummanee; Phatthanaphong Chomphuwiset; Chatklaw Jareanpon; Laor Boongasame; Khanabhorn Kawattikul
Indonesian Journal of Electrical Engineering and Computer Science Vol 30, No 2: May 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v30.i2.pp1232-1241

Abstract

Online deception has become a major problem affecting people, society, the economy, and national security. It is mostly done by spreading deceptive messages because message are quickly spread on social networks and are easily accessed by anyone. Detecting deceptive messages is challenging as the messages are unstructured, informal, and complex; this extends into Thai language messages. In this paper, various deep learning models are proposed to detect deceptive messages under two feature extraction trials. A balanced two-class dataset of deceptive and truthful Thai messages (n=2378) is collected from Facebook pages. Instance features are encoded using word embeddings (Thai2Fit) and one-hot encoding techniques. Five classification models, convolutional neural network (CNN), bidirectional long short-term memory (BiLSTM), bidirectional gated recurrent units (BiGRU), CNN-BiLSTM, and CNN-BiGRU, are proposed and evaluated upon the dataset with each feature extraction technique. The experimental results show that all the proposed models had excellent accuracy (95.59% to 98.74%) and BiLSTM with one-hot encoding gave the best performance, achieving 98.74% accuracy.
Conceptual framework of recommendation system with hybrid method Tammanoon Panyatip; Manasawee Kaenampornpan; Phatthanaphong Chomphuwiset
Indonesian Journal of Electrical Engineering and Computer Science Vol 31, No 3: September 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v31.i3.pp1696-1704

Abstract

Recommendation system relies on information of user preference and user behavior in order to recommend the useful information. The existing recommendation systems still have problems for new users and new items. This research proposes a new hybrid method to develop the conceptual framework of recommendation system that deals with new user and new movie data. The data used consists of a data from MovieLens and the internet movie database (IMDB). This work introduces a hybrid recommendation system which based on a combination of content-based filtering (CBF) and collaborative filtering (CF). Pre-filtering data is performed by finding an optimal number of clusters by calculating the total within cluster sum of square. In order to reduce the complexity of data and increase the relevance of the user-item ratings, the fuzzy c-mean (FCM) is employed. Then the similarity is calculated by using item-based method, the K-nearest neighbors and weight sum of the rating are applied. Finally, to recommend the movies, the research found that for new user data the precision is at 85% and mean absolute eror (MAE) value 2.1011. For new item data, the result of research obtains the precision at 87% and MAE value 2.0031. In conclusion, the new hybrid method developed can recommend movie efficiently.