Qing Shi Chua
Department of Electrical Engineering, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor.

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

Fault Location Techniques in Electrical Power System-A Review Hui Hwang Goh; Sy yi Sim; Mohamad Amirul Hafiz Mohamed; Abdul Khairi Abdul Rahman; Chin Wan Ling; Qing Shi Chua; Kai Chen Goh
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 1: October 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i1.pp206-212

Abstract

Electric fault is the main challenge in the process of providing continues electric supply. Fault can occur at anytime and anywhere. Due to the fault causes are mainly based on natural disaster or accident. Most fault occurrence hardly predicted nor avoided. Therefore, a quick response fault detection is necessary to ensure that the fault area is maintained to ensure a continuous power supply system. Hence, a system is required to detect and locate the position of the fault in the power system especially in the transmission line and distribution line. This paper will review the type of fault that possibly occurs in an electric power system, the type of fault detection and location technique that are available together with the protection device that can be utilized in the power system to protect the equipment from electric fault. 
Types of Circuit Breaker and its Application in Substation Protection Hui Hwang Goh; Sy yi Sim; Nur Iskandar bin Hamzah; Sulaiman bin Mazlan; Chin Wan Ling; Qing Shi Chua; Kai Chen Goh
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 1: October 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i1.pp213-220

Abstract

Power system consists of the generation, transmission, distribution, and substation. All the power system component requires suitable protection devices as the protection system to protect the system during fault occur. In this paper, the circuit breaker has been selected as one of the protection devices in several applications. The types of circuit breaker that has been reviewed in this paper are oil circuit breaker (OCB), air circuit breaker (ACB), sulphur hexafluoride (SF6) circuit breaker, vacuum circuit breaker, and DC breaker which are hybrid DC breaker and solid-state DC breaker. Normally, the systems or the circuits disrupted or damaged by the fault. To implement the protection system in the system or circuit, the type of faults and cause of faults should be known to overcome the fault. To provide the suitable voltage for the consumer, the substation is needed to control the voltage transmitted at high voltage from the generating station. Protection system is also required in a substation.
A Review of Lightning Protection System - Risk Assessment and Application Hui Hwang Goh; Sy yi Sim; Jamil Shaari; Noor Atiqah Azali; Chin Wan Ling; Qing Shi Chua; Kai Chen Goh
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 1: October 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i1.pp221-229

Abstract

 A lightning strike could bring thousands mega-ampere of current in a blink of eyes. As a result, a failure of grounding the strike may cause serious damage to the home and industrial appliances and gadgets. Hence, a lightning protection system is essential to the current transmission system. Lighting is a natural phenomenon that is unavoidable. Hence, the study of the properties and characteristics of lightning is a must in designing lighting protection system. Every application has different criteria to be fulfilled. The type of lighting protection system is categorized based on the location and user. The different of location is a public area, transportation system, power system transmission and generation system which include renewable energy source. Each area can conclude different level of protection. This paper is assessing the possibility and probability of transient impact on all applications including, public area, power system line, and generating system. The review includes countermeasure which addressed few steps to determine the effect of lightning and countermeasure of protection.
Assessment of Power System Risk in Cyber-Attacks in View of the Role Protection Systems Hui Hwang Goh; Sy yi Sim; Omar Abdi Mohamed; Ahmed Farah Mohamed; Chin Wan Ling; Qing Shi Chua; Kai Chen Goh
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 1: October 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i1.pp184-191

Abstract

This paper presents a risk assessment method for assessing the cyber security of power systems in view of the role of protection systems. This paper examines the collision of transmission and bus line protection systems positioned in substations on the cyber-physical performance of the power systems. The projected method simulates the physical feedback of power systems to hateful attacks on protection system settings and parameters. The relationship between protection device settings, protection logic, and circuit breaker logic is analyzed. The expected load reduction (ELC) indicator is used in this paper to determine potential losses in the system due to cyber attacks. The Monte Carlo simulation is used to calculate ELC’s account to assess the capabilities of the attackers and bus arrangements are changed. The influence of the projected risk assessment method is illustrated by the use of the 9-bus system and the IEEE-68 bus system.
Loss Of Excitation (LOE) Protection of Synchronous Generator Hui Hwang Goh; Sy yi Sim; Mohd. Nasri Abd Samat; Ahmad Mahmoud Mohamed; Chin Wan Ling; Qing Shi Chua; Kai Chen Goh
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 1: October 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i1.pp230-236

Abstract

Synchronous generators require certain protection against loss of excitation because it can lead to harmful effect to a generator and main grid. Systems of powers are evolving with applications of new techniques to increase reliability and security, at the meantime techniques upgradation is being existed to save financial cost of a different component of power system, which affect protection ways this report discuss the way of loss of excitation protection scheme for an increase in a synchronous generator. It is obvious that when direct axis synchronous reactance has a high value, the coordination among loss of excitation protection and excitation control is not effective. This lead to restricting absorption capability of the reactive power generator. This report also reviews the suitable philosophy for setting the limiters of excitation and discusses its effect on loss of excitation protection and system performance. A protection scheme is developed to allow for utilization of machine capability and power swing blocking is developed to increase the reliability when power swing is stable. 
Energy Power Plant in Electric Power Distribution Systems Equipping With Distance Protection Hui Hwang Goh; Sy yi Sim; Dahir Khere Diblawe; Mortar Mohamed Ali; Chin Wan Ling; Qing Shi Chua; Kai Chen Goh
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 1: October 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i1.pp192-198

Abstract

This paper suggests the theory of distance protection criteria in power distribution systems for power plant generation. Multi-developed countries have energy power plants that placed in remote areas which are far from the grid line. Hence, they should be coupled to the low power transportation systems necessarily. While higher-rating relays are adopted to preserve feeders at power substations, fuses are merely obtainable outside on feeder channel. The safe system process, space protection is dispatched to save feeders. In this review, feeders with distance relays are equipped, together with over-current protection relays and fuses. Energy power plant having distance protection system is designed the implemented system was a 6-MW unit of compressed power energy reproduction. The sample feeder was shortened to be equal four-bus experiment feeder for transmitting resolution. The fault currents have chances adopted to form protecting regions of distance relays. Protection of the power line through the designed power plants for distance relaying can decrease problem in relay location because of the impedance-based location of the distance relay. 
Transmission Line Fault Detection: A Review Hui Hwang Goh; Sy yi Sim; Asad Shaykh; Md. Humayun Kabir; Chin Wan Ling; Qing Shi Chua; Kai Chen Goh
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 1: October 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i1.pp199-205

Abstract

Transmission line is the most important part of the power system.  Transmission lines a principal amount of power. The requirement of power and its allegiance has grown up exponentially over the modern era, and the major role of a transmission line is to transmit electric power from the source area to the distribution network. The exploded between limited production, and a tremendous claim has grown the focus on minimizing power losses. Losses like transmission loss and also conjecture factors as like as physical losses to various technical losses, Another thing is the primary factor it has a reactive power and voltage deviation are momentous in the long-range transmission power line. In essentially, fault analysis is a very focusing issue in power system engineering to clear fault in short time and re-establish power system as quickly as possible on very minimum interruption. However,  the fault detection that interrupts the transmission line is itself challenging task to investigate fault as well as improving the reliability of the system. The transmission line is susceptible given all parameters that connect the whole power system. This paper presents a review of transmission line fault detection.