Khuan Y. Lee
Universiti Teknologi MARA

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Performance of Principal Component Analysis and Orthogonal Least Square on Optimized Feature Set in Classifying Asphyxiated Infant Cry Using Support Vector Machine R. Sahak; W. Mansor; Khuan Y. Lee; A. Zabidi
Indonesian Journal of Electrical Engineering and Computer Science Vol 9, No 1: January 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v9.i1.pp139-145

Abstract

An investigation into optimized support vector machine (SVM) integrated with principal component analysis (PCA) and orthogonal least square (OLS) in classifying asphyxiated infant cry was performed in this study. Three approaches were used in the classification; SVM, PCA-SVM, and OLS-SVM. Various numbers of features extracted from Mel-frequency Cepstral coefficient (MFCC) were tested to obtain the optimal parameters of SVM kernels. Once the optimal feature set is obtained, PCA and OLS selected the most significant features and the optimized SVM then classified the selected cry patterns. In PCA-SVM, eigenvalue-one-criterion (EOC), cumulative percentage variance (CPV) and the Scree test (SCREE) were used to select the most significant features. SVM with radial basis function (RBF) kernel was chosen in the classification stage. The classification accuracy and computation time were computed to evaluate the performance of each method. The best method for classifying asphyxiated infant cry is PCA-SVM with EOC since it produces the highest classification accuracy which is 94.84%. Using PCA-SVM, the classification process was performed in 1.98s only. The results also show that employing feature selection techniques could enhance the classifier performance.
Optimal Feature Selection Technique for Mel Frequency Cepstral Coefficient Feature Extraction in Classifying Infant Cry with Asphyxia A. Zabidi; W. Mansor; Khuan Y. Lee
Indonesian Journal of Electrical Engineering and Computer Science Vol 6, No 3: June 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v6.i3.pp646-655

Abstract

Mel Frequency Cepstral Coefficient is an efficient feature representation method for extracting human-audible audio signals. However, its representation of features is large and redundant. Therefore, feature selection is required to select the optimal subset of Mel Frequency Cepstral Coefficient features. The performance of two types of feature selection techniques; Orthogonal Least Squares and F-ratio for selecting Mel Frequency Cepstral Coefficient features of infant cry with asphyxia was examined. OLS selects the feature subset based on their contribution to the reduction of error, while F-Ratio selects them according to their discriminative abilities. The feature selection techniques were combined with Multilayer Perceptron to distinguish between asphyxiated infant cry and normal cry signals. The performance of the feature selection methods was examined by analysing the Multilayer Perceptron classification accuracy resulted from the combination of the feature selection techniques and Multilayer Perceptron. The results indicate that Orthogonal Least Squares is the most suitable feature selection method in classifying infant cry with asphyxia since it produces the highest classification accuracy.