Ali N Hasan
University of Johannesburg

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Optimization of PV Systems Using Data Mining and Regression Learner MPPT Techniques Adedayo M. Farayola; Ali N Hasan; Ahmed Ali
Indonesian Journal of Electrical Engineering and Computer Science Vol 10, No 3: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v10.i3.pp1080-1089

Abstract

Supervised machine learning techniques such as artificial neural network (ANN) and ANFIS are powerful tools used to track the maximum power point (MPPT) in photovoltaic systems. However, these offline MPPT techniques still require large and accurate training data sets for successful tracking. This paper presents an innovative use of rational quadratic gaussian process regression (RQGPR) technique to generate the large and very accurate training data required for MPPT task. To confirm the effectiveness of the RQGPR technique, the combination of ANN and RQGPR as ANN-RQGPR technique results were compared with the conventional ANN technique results, and that of combined ANN and linear support vector machine regression as ANN-LSVM technique results under different weather conditions. Results show that ANN-RQGPR technique produced the overall best result and with an improved performance.