Jamal El Mhamdi
Mohammed V University in Rabat

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Real-time RSS-based positioning system using neural network algorithm Safae El Abkari; Jamal El Mhamdi; El Hassan El Abkari
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 3: June 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v22.i3.pp1601-1610

Abstract

Locating services have come under the spotlight in recent years in various applications. However, locating methods that use received signal strength have low accuracy due to signal fluctuations. For this purpose, we present a Wi-Fi based locating system using artificial neural network to enhance the positioning process performances. We optimized the Levenberg Marquardt algorithm to propose the better configuration of the multi-layer time-delay perception neural network. We achieved an average error of 10.3 centimeters with a grid of 0.4 meter in four tests. Yet, due to the instability of the received signal strength RSS-based locating systems present a limitation in the resolution finesse that depends on the grid size.