Mohammed Abdulraheem Fadhel
University of Sumer

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Automated brain tumor classification using various deep learning models: a comparative study Alaa Ahmed Abbood; Qahtan Makki Shallal; Mohammed Abdulraheem Fadhel
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 1: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v22.i1.pp252-259

Abstract

The brain tumor, the most common and aggressive disease, leads to a very shorter lifespan. Thus, planning treatments is a crucial step in improving a patient's quality of life. In general, several image techniques such as CT, MRI, and ultrasound have been used for assessing tumors in the prostate, breast, lung, brain, etc. Primarily, MRI images are applied to detect tumors in the brain during this work. The enormous amount of data produced by the MRI scan thwarts tumor vs. non-tumor manual classification at a particular time. Unfortunately, with a small number of images, it has certain limitations (i.e., precise quantitative measurements). Therefore, an automated classification system is necessary to avoid human mortality. The automatic categorization of brain tumors in the surrounding tumor region is a challenging task concerning space and structural variability. Four deep learning models: AlexNet, VGG16, GoogleNet, and RestNet50, are used in this comparative study to classify brain tumors. Based on accuracy, the results showed that RestNet50 is the best model with an accuracy of 95.8%, while AlexNet has the fast performance with a processing time of 1.2 seconds. In addition, a hardware parallel processing unit (GPU) is employed for real-time purposes, where AlexNet (the fastest model) has a processing time of only 8.3 msec.
Identifying corn leaves diseases by extensive use of transfer learning: a comparative study Ahmed Samit Hatem; Maha Sabri Altememe; Mohammed Abdulraheem Fadhel
Indonesian Journal of Electrical Engineering and Computer Science Vol 29, No 2: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v29.i2.pp1030-1038

Abstract

Deep learning is currently playing an important role in image analysis and classification. Diseases in maize diminish productivity, which is a major cause of economic damages in the agricultural business throughout the world. Researchers have previously utilized hand-crafted characteristics to classify images and identify leaf illnesses in Maize plants. With the advancement of deep learning, researchers can now significantly enhance the accuracy of object classification and identification. Using the "Corn or Maize Leaf Disease Dataset" from the Kaggle website, four forms of maize leaf diseases were investigated: blight, common rust, gray leaf spot, and healthy. The pictures obtained from these corn leaf illnesses are categorized using four deep convolutional neural network (CNN) models that have been pre-trained (GoogleNet, AlexNet, ResNet50 and VGG16). Accuracy, precision, specificity, recall, F-score, and time are the six metrics used to assess the performance of any transfer learning (TL) model. MATLAB programming software is used to design and train the TL models. The accuracy of each item in the dataset has been checked. It has been determined that GoogleNet, AlexNet, VGG16, and ResNet50 each have an accuracy of 98.57%, 98.81%, 99.05%, and 99.36%, respectively.