Nuha A. Hamad
University of Anbar

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Single line to ground fault detection and location in medium voltage distribution system network based on neural network Ahmed K. Abbas; Sumaya Hamad; Nuha A. Hamad
Indonesian Journal of Electrical Engineering and Computer Science Vol 23, No 2: August 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v23.i2.pp621-632

Abstract

The aim of this project was to detect and locate the single ground failure lines that occurs in medium voltage (MV) networks on the transmission lines (TL). Compared with anther faults, single line-to-ground (SLG) is the most frequent. The neural network (NN) algorithm was advanced in order to discover and locate SLG faults. The network is simulated through simulated numerous defects at various locations, as well as changing earth resistance from (or 100 Ω) to TL to gather all of the data. In the electromagnetic transients’ program (EMTP) program software, the existing fault have been measured. In addition, the waves were evaluated by utilize MATLAP's fastfourier-transform to calculate the waves of top three of them, On the MV network are fifty hundred faults are simulated all data in the neural network at MATLAB were trained and examined to improve the NN algorithm according to this data. Comparing all the simulated location faults that have been applied with those all locations detected in the NN algorithm, the overall error between them has been found to be very low and not to exceed 0.7. The Simulink circuit was created from this algorithm and checked in order to predict each failure could occur in the future in the MV network.