Haval Tariq Sadeeq
Duhok Polytechnic University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

New symmetric key cipher capable of digraph to single letter conversion utilizing binary system Najdavan Abduljawad Kako; Haval Tariq Sadeeq; Araz Rajab Abrahim
Indonesian Journal of Electrical Engineering and Computer Science Vol 18, No 2: May 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v18.i2.pp1028-1034

Abstract

In this paper, a new Playfair cipher built on bits level symmetric key cryptographic was proposed for the purpose of converting pairs of letters (digraphs) into single letters. The proposed algorithm is capable to overcome many of the shortcoming and vulnerabilities that exist in the current classical version of Playfair algorithm. The Playfair cipher is exceedingly complex than a classical substitution cipher, but still simple to hack using automated tactics. It is famous as a digraph cipher because two letters are exchanged by other two letters. This destroys any solo letter occurrence statistics, but the digraph statistics still unaffected (frequencies of two letters). Unluckily letter pairs have a flatter distribution than the one letter frequencies, so this intricacy matters for solving the code using pen and paper procedures. The suggested encryption process is conducted as follows; letters are first arranged in a spiral manner in Polybius square, afterwards, each pair will be replaced utilizing before-after technique if we are arranging pairs horizontally and down-up technique (vertically). The former process produces pairs of Plaintext that will be converted to binary bit stream then will be divided over blocks with stable sizes. Bits of these blocks are taken from pairs then fit them into square matrix of suitable order to put the concept of row-wise and revers row-wise matrix. Bits of this matrix are split into 2x2 square matrixes. The sub-matrixes are formed 8 bits. Here the XNOR operation is taken into consideration for bitwise operation to generate the keys for decryption and produce the cipher-text.
Modified Vigenère cipher algorithm based on new key generation method Thamer Hassan Hameed; Haval Tariq Sadeeq
Indonesian Journal of Electrical Engineering and Computer Science Vol 28, No 2: November 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v28.i2.pp954-961

Abstract

Nowadays, as communication and network technologies evolve in modern life, ensuring the confidentiality of a cryptography system has become a critical requirement. The Vigenère cipher is attracting the attention of cryptography specialists, although the Vigenère cipher algorithm has a problem. The problem is due to a repeating encryption key. As a result of the multiple cryptographic approaches described in the literature, this paper proposes a novel encryption strategy for safe and secure data exchange by utilizing a new key generation process. The proposed encryption approach avoids the issue of repeating keys. Additionally, the classic Vigenère cipher encrypts the plaintext using a 26x26 Vigenère table, the researcher modified the original Vigenère table to 95x95, which adds more potential letters, mathematical symbols, numerals, and punctuation to a standard QWERTY keyboard layout. Additionally, the researcher added case sensitivity. To observe the performance of the proposed method, the index of coincidence and entropy have been calculated. The obtained results confirm the high performance of the proposed algorithm in comparison to the other algorithms used in this paper. The primary goal of this paper is to make cryptanalysis extremely complex and to promote data security.