Mustafa Murtdha
University of Information Technology and Communications

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Arabic handwritten digits recognition based on convolutional neural networks with resnet-34 model Rasool Hasan Finjan; Ali Salim Rasheed; Ahmed Abdulsahib Hashim; Mustafa Murtdha
Indonesian Journal of Electrical Engineering and Computer Science Vol 21, No 1: January 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v21.i1.pp174-178

Abstract

Handwritten digits recognition has attracted the attention of researchers in pattern recognition fields, due to its importance in many applications in public real life, such as read bank checks and formal documents which is a continuous challenge in the last years. For this motivation, the researchers created several algorithms in recognition of different human languages, but the problem of the Arabic language is still widespread. Concerning its importance in many Arab and Islamic countries, because the people of these countries speak this language, However, there is still a little work to recognize patterns of letters and digits. In this paper, a new method is proposed that used pre-trained convolutional neural networks with resnet-34 model what is known as transfer learning for recognizing digits in the arabic language that provides us a high accuracy when this type of network is applied. This work uses a famous arabic handwritten digits dataset that called MADBase that contains 60000 training and 1000 testing samples that in later steps was converted to grayscale samples for convenient handling during the training process. This proposed method recorded the highest accuracy compared to previous methods, which is 99.6%.