Mohamed Bouhamida
USTO-MB University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Robust control of a UPFC system with H~ control technique Maamar Benyamina; Mohamed Bouhamida; Tayeb Allaoui; Rachid Taleb; Mouloud Denai
Indonesian Journal of Electrical Engineering and Computer Science Vol 18, No 1: April 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v18.i1.pp533-543

Abstract

FACTS (Flexible AC Transmission Systems) technology has now been accepted as a potential solution to the stability problem and load flow. The Unified Power Flow Controller (UPFC) is considered to be the most powerful and versatile among all FACTS devices.  This paper presents the control of a UPFC system using Hinf robust control technique. A simulation study using Matlab/Simulink is presented to the performance of this control strategy and the robustness with respect to variations of the system parameters such as the inductance of the transmission line.
Performance comparison of field oriented control based permanent magnet synchronous motor fed by matrix converter using PI and IP speed controllers Mohamed Bouazdia; Mohamed Bouhamida; Rachid Taleb; Mouloud Denai
Indonesian Journal of Electrical Engineering and Computer Science Vol 19, No 3: September 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v19.i3.pp1156-1168

Abstract

This paper focuses on modeling and closed-loop speed control of a three-phase Permanent Magnet Synchronous Motor (PMSM) fed by a Matrix Converter (MC) based on Field-Oriented Control (FOC). The model considers a set of a small input filter with supply impedance or cable effect, to improve the quality of the input current. A simplified form of the Venturini modulation algorithm is used for switching the matrix converter and a comparative study of two types of speed controllers is presented, namely a proportional integral (PI) and a proportional integral (PI) to improve performances of the drive system in transient and stable conditions. The overall drive system is simulated using Matlab/Simulink environment. The motor performance is evaluated under different operating conditions such as sudden changes in the load or changes in the angular speed reference. The results of the converter MC gives unlimited output frequency, sinusoidal input current and output voltage waveforms and unity input displacement factor. The IP controller is shown to achieve better performance of the speed control loop, with or without the load torque as compared to the PI classic controller.