Kornkamol Thakulsukanant
Assumption University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

The statistical analysis of random-valued impulse noise detection techniques based on the local image characteristic: ROAD, ROLD and RORD Vorapoj Patanavijit; Kornkamol Thakulsukanant
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 2: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i2.pp794-803

Abstract

Advances in local image statistical analysis have made possible the random-valued impulse noise detection but the current noise detections based on ROAD (Rank-Ordered Absolute Differences), ROLD (Rank-Ordered Logarithmic Differences) and RORD (Rank-Ordered Relative Differences), which are the most three effective and practical detections using the local image statistical characteristic, operates effectively on different noise density and different image statistical characteristic. To address these issues, this paper proposes the comparative analysis on the noise detections based on ROAD, ROLD and RORD. Therefore, the first contribution is the comparative statistical distribution of these three noise detections. By comprehensive experiment at each noise density, the optimized detected threshold is later determined from four benchmark data: Lena, Girl, Pepper and Airplane. Moreover, the maximum detection accuracy for each case is comparatively demonstrated by using the noise detections based on ROAD, ROLD and RORD with the optimized detected threshold.
Simulated evaluation of new switching based median filter for suppressing SPN and RVIN Vorapoj Patanavijit; Kornkamol Thakulsukanant
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 2: August 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i2.pp688-696

Abstract

In the past two decades, the SPN (salt and pepper noise) suppressing method is worldwide interested researches on computer vision and image processing hence many SPN suppressing methods have been proposed. In general, the primary goal of SPN removal method is the suppressing of SPN in digital images thereby one of the recent effective and powerful SPN suppressing methods is a new switching-based median filtering (NSMF), which is innovated for suppressing high density SPN. Consequently, this paper thoroughly examines its efficiency and constrain of a new switching-based median filtering when this filter is used for contaminated image, which is synthesized by SPN and RVIN (random-value impulsive noise). In these simulations, six well-known images (Lena, Mobile, Pepper, Pentagon, Girl, Resolution) with two impulsive noise classes (SPN and RVIN) are used for measuring the its efficiency and constrain. An evaluation of the efficiency is conducted with many previous methods in forms of subjective and objective indicators.