Arezki Benfdila
Mouloud Mammreri University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Magnetic sensitivity modeling of dual gate MOS transistor Mohamed Kessi; Arezki Benfdila
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 2: November 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i2.pp1238-1248

Abstract

In this paper, the magnetic field effect on the carrier transport phenomenon in the double gate metal-oxide-semiconductor field-effect transistor (MOSFET) has been investigated. This is done by exploring the Lorentz force and the behavior of a semiconductor subjected to a constant magnetic field. The magnetic field modulates the electrons position and density as well as the potential distribution in the case of silicon tunnel tunneling field-effects (FETs). This modulation impacts the device electrical characteristics such as ON current (ION), subthreshold leakage current (IOF), threshold voltage (VT), magneto-transconductance (gmm) and output magneto-conductance (gmDS). In addition, a hall voltage (VH) is induced and modulated by the magnetic field. It has been observed that this voltage influences the effective applied gate voltage. It has been observed that the threshold voltage variations induced by the magnetic field is of paramount importance and affects the device switching properties both speed and power dissipation, noted that the threshold voltage VT and (Ion/Iof) ratio are reduced by 10-3V and 102 for a magnetic field of ±6 and ±5.5 Tesla, respectively. We have simulated the different behavior in the channel, mainly doping concentration, potential distribution, conduction and valence bands, total current density, total charge density, electric field, electron mobility, and electron velocity.