Aviv Yuniar Rahman
Universitas Widyagama

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Evaluation comparison of wave amount measurement results in brass-plated tire steel cord using RMSE and cosine similarity April Lia Hananto; Sarina Sulaiman; Sigit Widiyanto; Aviv Yuniar Rahman
Indonesian Journal of Electrical Engineering and Computer Science Vol 22, No 1: April 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v22.i1.pp207-214

Abstract

In the production process, quality checking is very important, one of which is on the wire. In the process of making brass-coated steel tire straps sometimes produce quality goods not in accordance with the desired standard values. Checks that are carried out manually have low efficiency and quite high errors occur. So it is necessary to check by measuring the wavelength on the brass plated steel cord automatically. In this study, used 3 automatic measurement methods using 2 evaluations, namely RMSE and Cosine Similarity. The results showed the best measurement using RMSE with method 2. Whereas the worst method uses RMSE with method 1. The smallest RMSE value is 0.0098 and the largest RMSE is 0.0966. The lowest Cosine Similarity value is 0.1253, while the highest Cosine Similarity value is 0.2079.
Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter Indra Kurniawan; April Lia Hananto; Shofa Shofia Hilabi; Agustia Hananto; Bayu Priyatna; Aviv Yuniar Rahman
JATISI (Jurnal Teknik Informatika dan Sistem Informasi) Vol 10 No 1 (2023): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)
Publisher : Lembaga Penelitian dan Pengabdian pada Masyarakat (LPPM) STMIK Global Informatika MDP

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35957/jatisi.v10i1.3582

Abstract

Online buying and selling transactions are increasing in Indonesia due to the ease of using marketplace platforms, and online shopping saves more time than offline shopping. Each marketplace has advantages and disadvantages, this affects customer sentiment who have made transactions on the marketplace platform. This research uses customer opinion from tweet data based on positive or negative sentiments to compare the Naive Bayes (NB) and Support Vector Machine (SVM) classification algorithms with the aim of finding out the best classification algorithm based on the accuracy value for sentiment analysis using the marketplace platform. The tweet data in this study was taken from October 18 to November 11, 2022. To test the performance of the NB and SVM classification algorithms using the Cross Validation method and from the results of the comparison test that the SVM algorithm has the best accuracy value compared to the NB algorithm. Where the accuracy value of Tokopedia uses the NB algorithm is 85.34%, and the accuracy value uses SVM 86.82%, the accuracy value for Shopee uses NB is 80.04%, and the accuracy value uses SVM 80.91%. and Lazada which uses the NB algorithm has an accuracy value of 83.52%, while the accuracy value uses SVM 88.93%, which means that the use of the SVM algorithm has the best level of accuracy.