Seffi Gebeyehu Mengistu
Bahir Dar University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Computer vision for Ethiopian agricultural crop pest identification Dagnachew Melesew Alemayehu; Abrham Debasu Mengistu; Seffi Gebeyehu Mengistu
Indonesian Journal of Electrical Engineering and Computer Science Vol 3, No 1: July 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v3.i1.pp209-214

Abstract

Crop pest is an organism that creates damage on to the agriculture by feeding crops. The research focuses on four major types of crop pest which occurs on teff, wheat, sorghum, barley and maize these are Black tef beetles, Ageda korkur, Degeza and Yesinde Kish Kish. The aim of this paper is identification of the four types of agricultural crop pest using a computer vision technique. The image of crop pest were taken from Amhara regions of Ethiopia i.e. Adiet, Dejen, Gonder, Debremarkos (places where images were taken).  In this paper, artificial neural network (ANN), a hybrid of self organizing map (SOM) with Radial basis function (RBF) and a hybrid of support vector machine (SVM) with Radial basis function (RBF) are used, and also we used Otsu and Kmeans segmentation techniques. Finally we selected Kmeans techniques for segmenting crop pest. In general, the overall result showed that using kmeans segmentation in RBF and SVM perform better than using otsu method in the other algorithm and the recognition performance of the combination of RBF (Radial basis function) and SVM (support vector machine) is 93.33%.
An Automatic Coffee Plant Diseases Identification Using Hybrid Approaches of Image Processing and Decision Tree Abrham Debasu Mengistu; Seffi Gebeyehu Mengistu; Dagnachew Melesew Alemayehu
Indonesian Journal of Electrical Engineering and Computer Science Vol 9, No 3: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v9.i3.pp806-811

Abstract

Coffee Leaf Rust (CLR), Coffee Berry Disease (CBD) and Coffee Wilt Disease (CWD) are the three main diseases that attack coffee plants. This paper presents the identification of these types diseases using hybrid approaches of image processing and decision tree. The images are taken from Southern Ethiopia, Jimma and Zegie. In this paper backpropagation artificial neural network (BPNN) and decision tree had been used as techniques; a total of 9100 images were collected. From these, 70% are used for training and the remaining 30% are used for testing. In general, 94.5% accuracy achieved when decision tree and BPNN with tanh activation function are combined.