N. A. Zambri
Universiti Tun Hussein Onn Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Modeling of a planar SOFC performances using artificial neural network N. A. Zambri; Norhafiz Salim; A. Mohamed; Ili Najaa Aimi Mohd Nordin
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i3.pp1645-1652

Abstract

The Planar Solid Oxide Fuel Cell (PSOFC) is one of the renewable energy technologies that is important as the main source for distributed generation and can play a significant role in the conventional electrical power generation. PSOFC stack modeling is performed in order to provide a platform for the optimal design of fuel cell systems. It is explained by the structure and operating principle of the PSOFC for the modeling purposes. PSOFC model can be developed using Artificial Neural Network approach. The data required to train the neural net-work model is generated by simulating the existing PSOFC model in the MATLAB/ Simulink software. The Radial Basis Function (RBF) and Multilayer Perceptron (MLP) neural networks are the most useful techniques in many applications and will be applied in developing the PSOFC model. A detailed analysis is presented on the best ANN network that gives the greatest results on the performances of the PSOFC. The simulation results show that Multilayer Perceptron (MLP) gives the best outcomes of the PSOFC performance based on the smallest errors and good regression analysis.
Fault location identification of double circuit transmission line using discrete wavelet transform Abdul Hadi Bin Mustapha; R Hamdan; F. H. Mohd Noh; N. A. Zambri; M. H. A. Jalil; Marlia Morsin; M.F. Basar
Indonesian Journal of Electrical Engineering and Computer Science Vol 15, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v15.i3.pp1356-1365

Abstract

The importance of supplying undisturbed electricity keep increasing due to modernization and lifestyle. Any disturbance in the power system may lead to discontinuation and degradation in the power quality. Therefore, detecting fault, fault type and fault location is a major issue in power transmission system in order to ensure reliable power delivery system. This paper will compare two prominent methods to estimate the fault location of double circuit transmission line. Those methods are Discrete Wavelet Transform algorithm and Fast Fourier Transform algorithm. Simulations has been carried out in MATLAB/Simulink and a variety of fault has been imposed in order to analyse the capability and accuracy of the fault location detection algorithm. Results obtained portrayed that both algorithms provide good performance in estimating the fault location. However, the maximum percentage error produced by the Discrete Wavelet Transform is only 0.25%, 0.6% lower than maximum error produces by Fast Fourier Transform algorithm. As a conclusion, Discrete Wavelet Transform possesses better capability to estimate fault location as compared to Fast Fourier Transform algorithm.