Thamizh Thentral T. M.
SRM Institute of Science and Technology

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Design of vehicle using Ackermann steering with IoT concept Albert Paul Arunkumar; Palanisamy R.; Selvakumar K.; Usha S.; Thamizh Thentral T. M.; Karthikeyan D.
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 3: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i3.pp1432-1436

Abstract

Electric vehicles are becoming more demanding these days. In this project the possibility of using Ackerman steering with electric drive servomotor is explained. Scalability is the advantage of using this mechanism which can be adopted for four-wheel vehicle system as well. The objective of this project is to do design a system using Ackerman steering which determines the maximum and minimum angle of the turning of the wheels. It also avoids the front tire slippage and activates pure rolling. Ackermann steering geometry is a geometric arrangement of linkages in the steering of a car or other vehicle designed to solve the problem of wheels on the inside and outside of a turn needing to trace out circles of different radii. The geometrical solution to this is for all wheels to have their axles arranged as radii of circles with a common centre point. As the rear wheels are fixed, this centre point must be on a line extended from the rear axle. Intersecting the axes of the front wheels on this line as well requires that the inside front wheel be turned, when steering, through a greater angle than the outside wheel. The microcontroller used in this project is ATMega16 andlmax232 is used for the serial data transmission.
Innovative design and development of attitude determination and control systems for CubeSats with reaction wheels Thamizh Harsha S.; Thamizh Thentral T. M.; Palanisamy Ramasamy; Animesh Pal; Sabarish M.; Swastik Panda; Indraneela Das
Indonesian Journal of Electrical Engineering and Computer Science Vol 34, No 1: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v34.i1.pp109-118

Abstract

Attitude determination and control systems (ADCS) represent a critical facet of CubeSat missions, orchestrating the precise orientation and stabilization of these small satellites in the space environment. This paper presents a comprehensive design and development of an ADCS tailored for CubeSats, harnessing a reaction wheel system to deliver a cost-effective and dependable solution for small satellite applications. The research begins by elucidating the requisites and specifications for the ADCS and then delves into the design phase, complemented by intricate modelling and simulation employing MATLAB Simulink and the Webots Simulator. The results of this study underscore the exceptional performance of the proposed ADCS configuration, leveraging the reaction wheel model. This system demonstrates an unparalleled capacity to achieve precise and controlled attitude adjustments, well within the defined parameters. Furthermore, this research underscores the pivotal role played by efficient system design, meticulous simulation, and rigorous testing in the triumphant implementation of ADCS, greatly enhancing CubeSat missions and their contributions to the realm of space exploration and technology innovation. This comprehensive approach to the design and testing of an ADCS for CubeSats ensures that these diminutive satellites continue to make significant strides in space missions, paving the way for an exciting future of space research and technology development.