Faraz Ahmad
Jamia Millia Islamia University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Identification of user’s credibility on twitter social networks Faraz Ahmad; S. A. M. Rizvi
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 1: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i1.pp554-563

Abstract

Twitter is one of the most influential social media platforms, facilitates the spreading of information in the form of text, images, and videos. However, the credibility of posted content is still trailed by an interrogation mark. Introduction: In this paper, a model has been developed for finding the user’s credibility based on the tweets which they had posted on Twitter social networks. The model consists of machine learning algorithms that assist not only in categorizing the tweets into credibility classes but also helps in finding user’s credibility ratings on the social media platform. Methods and results: The dataset and associated features of 100,000 tweets were extracted and pre-processed. Furthermore, the credibility class labelling of tweets was performed using four different human annotators. The meaning cloud and natural language understanding platforms were used for calculating the polarity, sentiment, and emotions score. The K-Means algorithm was applied for finding the clusters of tweets based on features set, whereas, random forest, support vector machine, naïve Bayes, K-nearest-neighbours (KNN), J48 decision tree, and multilayer perceptron were used for classifying the tweets into credibility classes. A significant level of accuracy, precision, and recall was provided by all the classifiers for all the given credibility classes.